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Resumen

En redes universitarias como la de la Universidad
Estatal Peninsula de Santa Elena, la gestion LAN
sigue siendo reactiva, sin historial ni alertas tempranas.
Este estudio propone aplicar algoritmos supervisados
de aprendizaje automatico, seleccionados con base
en evidencia cientifica, para construir y evaluar un
modelo predictivo de fallos a partir de telemetria SNMP
obtenida mediante Zabbix. Se utilizé una metodologia
combinada de Investigacion en Ciencias del Disefio
(DSR) y CRISP-DM, con ventanas de 60 minutos
sobre 7571 ejemplos (729 fallos y 6 842 normales). Se
compararon dos modelos: Random Forest, entrenado
con caracteristicas estadisticas, y una red neuronal
convolucional unidimensional, aplicada sobre secuencias
multivariadas. Random Forest alcanzé una exactitud
del 96,88%, mientras que la red neuronal logr6 un
recall del 73,10%. Los resultados demuestran su
complementariedad y evidencian que la combinacion de
ambos modelos favorece una gestion proactiva de la red
institucional, reduciendo los tiempos de respuesta ante
incidencias.

Palabras clave: Aprendizaje automatico, Analisis
predictivo, Gestion de redes, Redes universitarias, SNMP
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Abstract

In university networks such as the one at the Universidad
Estatal Peninsula de Santa Elena, LAN management
remains predominantly reactive, lacking historical
records and early-warning mechanisms.  This study
proposes the application of supervised machine-learning
algorithms, selected based on scientific evidence, to build
and evaluate a predictive failure-detection model using
SNMP telemetry collected through Zabbix. A combined
Design Science Research (DSR) and CRISP-DM
methodology was applied, with 60-minute windows over
7 571 samples (729 failures and 6 842 normal cases).
Two approaches were compared: a Random Forest model
trained on statistical features, and a one-dimensional
convolutional neural network applied to multivariate
sequences. Random Forest achieved an accuracy of 96.88
%, while the neural network reached a recall of 73.10
%. The results show the complementary nature of both
models and demonstrate that their combined use supports
proactive institutional network management, reducing
response times to incidents.

Keywords: Machine learning, Predictive analytics,
Network management, University networks, SNMP.
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1. Introduccion

El avance tecnoldgico y la digitalizacion han convertido a
las redes de datos en un pilar esencial para las funciones
académicas y administrativas. Esto exige mecanismos de
seguimiento que vayan mas alla del monitoreo reactivo
[1]. La operacion de aulas virtuales, sistemas de matricula,
repositorios académicos y servicios de identidad demanda
visibilidad continua del rendimiento de la red. Plataformas
que recopilan indicadores a través del Protocolo simple de
administraciéon de red (SNMP) son una forma practica de
obtener datos. Esto posibilita integrar registros historicos y
facilitar la toma de decisiones [2, |3]]. Existen herramientas
como PRTG que en conjunto con firewalls avanzados
combinan visualizacion, correlacion e identificacion de
ataques en tiempo real [[4]]. No obstante, garantizar los niveles
adecuados en la calidad del servicio, como latencia, pérdida
de paquetes y disponibilidad, resulta ser un reto en la gestion
de redes en entornos universitarios [5]].

Las universidades enfrentan la presion de garantizar
conectividad permanente. Aunque las plataformas de
monitoreo institucional recolectan indicadores, su enfoque
sigue siendo reactivo y carece de prediccion. En la
Universidad Estatal Peninsula de Santa Elena (UPSE), la
herramienta The Dude permite observacion en tiempo real
[6], pero no conserva registros historicos ni genera alertas
anticipadas. Alternativas como Zabbix, Nagios o Prometheus
ofrecen recopilacion de datos SNMP y disponibilidad,
transformando los datos operativos en conocimiento de
gestion [|7]].

Ante esta limitacion, se genera la necesidad de contar con
una gestion proactiva. Esto se logra al utilizar algoritmos
supervisados capaces de reconocer patrones en registros
histéricos de la red. Diversos estudios han demostrado que
algoritmos como los Arboles de Decision, Random Forest
y Redes Neuronales resultan ser eficaces en la deteccion y
clasificacion de anomalias. Asi, se confirma su utilidad en
entornos universitarios [[8]. Estos métodos se incorporan cada
vez mas a las practicas de monitoreo avanzado, donde la
telemetria 'y el Machine Learning (ML) permiten transformar
datos en predicciones y acciones preventivas [9)]. El uso
de modelos predictivos reduce el tiempo de inactividad y
optimiza recursos al priorizar intervenciones segun el nivel
de riesgo [10], un aspecto clave para mantener la calidad de
servicio [11].

Asimismo, la evidencia empirica reporta altos niveles de
desempefio en algoritmos supervisados aplicados a bases
SNMP-MIB [12], asi como experiencias colaborativas
orientadas a la deteccion de fallos y ataques DDoS mediante
aprendizaje automatico [[13]]. Estos enfoques se basan en el
aprendizaje supervisado, donde los modelos se entrenan con
ejemplos etiquetados (normal o fallo) para minimizar el error
esperado [14]).

La prediccion de fallos en redes LAN no solo es un reto
técnico, sino también operativo. En entornos académicos,
una interrupcion prolongada puede afectar la continuidad
institucional, retrasar procesos administrativos y generar
costos adicionales por la recuperacion del servicio. El
presente estudio se desarrollara en la red LAN de la
UPSE, utilizando el paradigma gestor-agente SNMP. Se
recolectaran series temporales de contadores de octetos
de entrada y salida y variables de estado, como la

latencia ICMP, la pérdida de paquetes y la disponibilidad,
mediante herramientas institucionales. Con esta informacioén
se construira un conjunto de datos etiquetado que represente
tanto condiciones de fallo como de operacion normal [[15]].

Finalmente, este entorno representa un escenario adecuado
para evaluar el impacto de modelos de aprendizaje en
métricas reales de produccion [16]]. La investigacion se
orienta en responder la siguiente pregunta: ;Qué algoritmos
supervisados, seleccionados con base en evidencia cientifica,
predicen con mayor eficacia los fallos en la red LAN
de la UPSE usando indicadores histéricos SNMP, y qué
desempefio (accuracy, precision, recall, F1, AUC-ROC)
alcanzan frente a lineas base y entre si?

En este contexto y con el fin de responder a la pregunta
de investigacion se propone un objetivo principal: Aplicar
algoritmos supervisados de aprendizaje automatico,
seleccionados con base en evidencia cientifica, para evaluar
su rendimiento en la prediccion de fallos en la red LAN de
la Universidad Estatal Peninsula de Santa Elena, utilizando
métricas historicas recolectadas del entorno institucional.
El estudio se desarrolld a partir de indicadores historicos
recolectados mediante telemetria SNMP, incluyendo
latencia, disponibilidad, pérdida de paquetes y trafico de
red. Este enfoque permitio identificar los periodos de mayor
consumo de ancho de banda y validar el desempeifio de los
modelos mediante métricas como exactitud, precision, recall
y area bajo la curva ROC, fortaleciendo la gestion proactiva
de la infraestructura institucional.

FUNDAMENTACION TEORICA
Gestion de redes LAN y monitoreo SNMP

En el modelo gestor-agente de SNMP, cada dispositivo
expone objetos MIB como contadores de interfaz y estados
operativos. El gestor consulta periodicamente dichos objetos
para persistir las lecturas como series temporales en su
base de datos. En este estudio, ese rol lo cumple Zabbix,
cuya funcion es consolidar indicadores por dispositivo o
interfaz para su analisis posterior, evitando configuraciones
redundantes y habilitando la explotacion histérica de la
telemetria [14]] [[4] p. 14].

Variables predictoras de fallos

El conjunto de predictores se fundamenta en objetos MIB
de interfaz y sondeo activo que capturan desempefo y
disponibilidad [[17]:

e Octetos de entrada / Octetos de salida: contadores
acumulativos por interfaz; sus diferencias por intervalo
estiman ancho de banda (bit/s).

e Paquetes Unicast de entrada y Salida normal /
Paquetes Unicast de entrada y Salida con errores:
evidencian degradaciones fisicas o de capa 2.

e Latencia y pérdida ICMP: indica el tiempo y el
porcentaje de respuesta, proporcionando informacion
para evaluar la disponibilidad y la calidad de servicio.

e Disponibilidad y reinicios: reinicio del tiempo
de actividad puede utilizarse para identificar
interrupciones en las series temporales.

Estos indicadores, almacenados como series temporales,
facilitan la creacion del conjunto de datos monitorizado para
la prediccion de fallos.



Criterios de seleccion de los algoritmos supervisados

Para la seleccion de los algoritmos se definieron criterios
objetivos basados en la literatura reciente:

e Evidencia de aplicacion en redes académicas o
empresariales con telemetria SNMP, MIB o protocolos
equivalentes.

e Reporte de métricas comparables entre estudios
(accuracy, precision, recall, F1 y AUC-ROC).

e Capacidad de generalizacion y razonable costo
computacional para entornos de produccion.

La Tabla [T] presenta los algoritmos identificados entre 2019
y 2025, organizados por tipo de aprendizaje, precision

reportada, interpretabilidad y escalabilidad. Se observa que
los algoritmos supervisados, como Random Forest (RF),
Maquinas de Vectores de Soporte (SVM), Arboles de
decision, Gradient Boosting y k-vecinos mas cercanos
(k-NN), dominan la literatura, mientras que los modelos
profundos como redes neuronales convolucionales (CNN),
redes neuronales recurrentes de tipo LSTM y perceptrones
multicapa (MLP) muestran métricas superiores (95-98 %)
aunque con mayor demanda computacional.

Los métodos no supervisados e hibridos —por ejemplo, redes
generativas antagénicas (GAN), K-means, redes profundas
de creencia (DBN) y redes neuronales de grafos con atencion
multiagente (GNN+MAB)— aparecen en menor proporcion
y se orientan principalmente a tareas de agrupamiento o
generacion de datos sintéticos.

Tabla 1: Comparacion entre algoritmos para deteccion de fallos en redes (2019-2025): supuestos, métricas tipicas, complejidad

y consideraciones de implementacion.

Tipo de Aprendizaje Algoritmo Precision / Interpretacion Escalabilidad Fuente
Accuracy
Arbol de decisién Media-alta Alta Limitada en grandes |18} |19} [20, |21} |22,
(70-90 %) datasets 23|
CNN Muy alta (>95 %) Baja Alta (entrenamiento |20, [24, |25} |26} |27,
distribuido) 28| [29]
Gradient Boosting Muy alta (90-98 %) Media Alta |23} |26} 130]
k-Nearest Neighbors ~ Media (75-90 %) Alta Baja en datasets |20} |21} |22, |23} |31}
(KNN) grandes 32|
Supervisado
LSTM Muy alta (>95 %) Baja Alta (requiere |24} 127]
GPUs)
MLP Alta (85-95 %) Baja Alta [22] 23} |25] [26]
Naive Bayes Media (70-85 %) Alta Muy alta |21} |22} 132]
Random Forest Alta (90-95 %) Media Alta |19} |20} |22, |23} |26}
27,131, 132} 33| |34}
35)
Regresién Logistica Media (70-85 %) Muy alta Alta 119, |22, 123, 135|
Support Vector Alta (85-95 %) Media Limitada (>10k |19} [21} |22} |23} |26}
Machine ejemplos) 31}, [35]
Transformers Muy alta (>97 %) Baja Muy alta (requiere 136]
autorregresivo GPU/TPU)
GAN Muy alta (datos Muy baja Limitada |37} 138]
sintéticos reales) (entrenamiento
No supervisado inestable)
K-means Variable (70-90 %) Media Muy alta |33]
WSBM Alta (85-95 %) Media Alta en grafos |39]
medianos
DBN Alta (85-95 %) Baja Media |26]
Hibrido
GNN + MAB Muy alta (95-97 %) Baja-media Alta (aplicable a |140]

loT /SDN)

Comparativa y justificacién final

La bibliografia reciente destaca dos familias de algoritmos.
Los superficiales, basados en arboles [|18, 23 126,127, |30, 35|
0 Maquinas de Vectores de Soporte [19} |21} 22} |23} 126, 31}
35]]. Por otra parte, los algoritmos profundos basados en redes

neuronales [20} 22} 23} 24} 25| |26} [27} |28}, |29} 36} |37}, |38}, |40]].

En la Tabla[2]se resumen los algoritmos por tipo (superficial
o profundo), junto con su rasgo distintivo y la frecuencia
observada en la literatura.

En la revision PRISMA, el algoritmo Random Forest es



el mas aplicado con 11 trabajos. Seguido de SVM con
7 y Arboles de decision que tiene 6 aplicaciones. Las

aplicaciones para los algoritmos profundos fueron de 7 para
CNN y 4 para MLP.

Tabla 2: Algoritmos mas aplicados por profundidad.

N Tipo Algoritmo Caracteristica diferencial Prec./Acc. Fuente
1 Random Forest Robusto  contra  overfitting, Alta (90-95 %) 119, |20, |22} |23 |26, |27} |31} |32, |33, |34 |35]|
estandar en benchmarks
Superficial
2 SVM Datos pequefios con fronteras no  Alta (85-95%) |19, [21} |22, |23 |26 |31} |35|
lineales
3 Arbol dec. Base de ensambles (RF, GB, Media-alta (70-90 %) |18, |19, |20, |21} [22, |23|
XGBoost)
CNN Extrae  patrones relevantes Muy alta (>95%) |20 [24, 25, |26} [27} |28, 29|
Profundo automaticamente
2 MLP Red neuronal densa con capas  Alta (85-95%) |22, |23, 25| [26]

ocultas

La preseleccion de Random Forest y CNN-1D se bas6 en
su desempefio superior en la literatura reciente, su equilibrio
entre interpretabilidad y capacidad de generalizacion, y su
aplicabilidad a conjuntos de datos multivariados derivados
de telemetria SNMP.

Los trabajos previos han demostrado la utilidad de estos
modelos en la deteccion de anomalias, aunque la mayoria
se enfoca en redes heterogéneas o entornos controlados. Este
estudio aborda un segmento de red universitaria real, basada
en telemetria SNMP, aportando evidencia bibliografica sobre
la aplicacion de estos métodos en contextos institucionales.

2. Materiales y Métodos

La presente investigacion es de tipo aplicado, con un enfoque
cuantitativo y predictivo. Estd orientada a identificar y
evaluar algoritmos de aprendizaje supervisado para predecir
fallos en la red LAN de la UPSE a partir de indicadores
histéricos SNMP.

Se utilizaron dos algoritmos: Random Forest (RF), que utiliza
vectores de caracteristicas tabulares agregados por ventana, y
una Red Neuronal Convolucional 1D (CNN-1D), que procesa
secuencias multivariadas crudas de 60 pasos por ventana.
Esta combinacion permitié comparar modelos explicables
(RF) con modelos de alto rendimiento (CNN-1D), buscando
optimizar la precision y generalizacion del sistema de
prediccion.

El estudio se bas6 en la metodologia de Investigacion en
Ciencias del Disefio (DSR, por sus siglas en inglés), que
incluye tres fases principales: relevancia, disefio y rigor [41]].
En la fase de relevancia se definid el problema de la gestion
reactiva de fallos en la LAN de la UPSE y se caracterizo el
contexto operativo. Se tomaron datos historicos de telemetria
via SNMP durante el horario académico. Este enfoque

garantizé un impacto institucional medible en términos de
continuidad de servicio y tiempos de respuesta.

En la fase de diseflo, se construy? el artefacto experimental.
En el que se incluye una secuencia de datos con indicadores
SNMP desde Zabbix. Los datos se limpiaron, posteriormente
se etiquetaron y segmentaron en ventanas temporales.

Finalmente, se realiz6 la extraccion de caracteristicas y la
implementacion de los modelos supervisados seleccionados:
Random Forest y CNN-1D. Para el desarrollo del modelo
Random Forest se utilizo la biblioteca Scikit-learn.

Para el modelo CNN-1D se aplico Lightning sobre PyTorch.
Para la busqueda de hiperparametros y seleccion de
caracteristicas se empled la métrica F1-macro como criterio
de evaluacion. El desempefio de los modelos se evalud
mediante validacion cruzada estratificada, garantizando
consistencia entre los experimentos.

Entre las métricas reportadas se incluye accuracy, precision,
recall, F1-Score, F2-Score, ROC-AUC y PR-AUC,
complementadas con analisis comparativos entre los modelos
y sus umbrales. Asimismo, se fijaron semillas aleatorias para
asegurar la reproducibilidad en los resultados.

Los datos se tomaron de 38 puntos de acceso de la marca
Ruckus distribuidos de la siguiente forma: 2 del modelo
R320, 4 del modelo T350C y 32 del modelo R650. Los
datos brutos y scripts no se publican por motivos de
confidencialidad.

Sin embargo, la investigacion preservd la trazabilidad
y replicabilidad interna mediante documentacion técnica
detallada. En conjunto, la metodologia DSR permitio disefiar,
evaluar y transferir una solucion predictiva aplicable a
entornos reales de redes universitarias como la UPSE, tal
como se muestra en la Figural[T]
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Figura 1: Metodologia DSR aplicada al desarrollo del sistema de prediccion de fallos en la red LAN de la UPSE.

Ciclo de relevancia La primera fase consistio en una
revision exhaustiva de la literatura cientifica sobre el uso del
aprendizaje automatico en Redes LAN enfocada en entornos
universitarios y publicos. Esta revision permitié identificar
las principales causas de fallos en la red y los indicadores
que pueden anticiparlos. En sintesis, los fallos observados en
la red LAN de la UPSE se originan principalmente por (i)
la sobrecarga de enlaces y puertos, (ii) la degradacion fisica
en las capas 1 y 2, (iii) la saturacion y reinicios de equipos,
y (iv) la elevada demanda de usuarios durante las horas
de mayor actividad académica. Estas condiciones derivan
en congestion y degradacion del rendimiento, provocando
interrupciones en los servicios académicos, deterioro de la
calidad de servicio (QoS), aumento de incidentes gestionados
por la mesa de ayuda y afectaciéon reputacional para la
institucion.

Se aplicé una revision estructurada de la literatura en
Scopus y Web of Science para identificar estudios que
aplicaran algoritmos supervisados a la prediccion de fallos
en redes LAN con telemetria SNMP/MIB. Del total de
269 registros iniciales, se eliminaron duplicados y estudios
no pertinentes, seleccionandose finalmente 31 trabajos
con métricas comparables y contextos afines a redes
universitarias. Esta base permitié definir los algoritmos
candidatos para el modelado.

Ciclo de diseio

Para el ciclo de disefio se aplico la metodologia CRISP-DM
para construir el artefacto predictivo. En la fase de
comprension del negocio se estableci el objetivo de anticipar
fallos en la red LAN de un edificio académico de la UPSE.
La fase de comprension y preparacion de datos se materializod
en un pipeline que recolecta telemetria SNMP desde Zabbix,
estandariza y alinea las series temporales. Los datos se
agruparon en ventanas de 60 minutos con etiquetado de
normal o fallo. Una vez agrupado se extrajeron caracteristicas
estadisticas como la media, desviacion estandar, el minimo,
el maximo y el jitter para el indicador tiempo de respuesta.

Posteriormente, en la aplicacion de los algoritmos, el modelo
Random Forest se entrend sobre caracteristicas extraidas,
mientras que la CNN-1D se aplico con los datos crudos.
Ambos modelos fueron entrenados y validados mediante
estrategias mixtas de particionado, reservando un conjunto
independiente para la prueba final. Los detalles de ajuste de
hiperparametros, seleccion de caracteristicas y calibracion de
umbrales se describen en la seccién Evaluacion del modelo.
La arquitectura general del sistema y el flujo metodolégico
completo, desde la recoleccion SNMP hasta la validacion de
los modelos, se detallan en la Figura
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Conjunto de datos

Los datos se recolectaron mediante SNMP con Zabbix en
un edificio académico de la UPSE, ubicado en la zona este
del campus. La recoleccion se hizo durante cuatro semanas,
desde el 25 de agosto al 17 de septiembre del 2025, de lunes
a viernes entre las 07:00 y las 19:00 horas. Se recolecta los
datos en este periodo debido a que es cuando el trafico de
usuarios es mas representativo. El total de datos almacenados
alcanzo los 547 874 registros. Los datos estan distribuidos de
la siguiente forma: Semana 1 (136 925), Semana 2 (136 990),
Semana 3 (136 991) y Semana 4 (136 968). Los indicadores

incluyeron disponibilidad (ping exitoso/fallido), tiempo de
respuesta ICMP, octetos transmitidos y recibidos, paquetes
unicast enviados y recibidos y uptime para identificar
reinicios en los dispositivos. En la Tabla[3]se detalla el total
de datos recolectados por dispositivo, asi como la cantidad
de ocasiones en que se registraron o no incidencias. Las
proporciones se mantienen consistentes entre modelos, con
aproximadamente un 9,6 % de ventanas con fallos, lo que
garantiza una representacion adecuada de ambas clases para
la validacion cruzada y la comparacion entre algoritmos
supervisados.

Tabla 3: Algoritmos mas aplicados por profundidad.

Dispositivo Cantidad Normal Fallo Total
R320 2 407 55 462
T350C 4 855 7 932
R650 32 5580 597 6177
Total 38 6842 729 7571

Descripcion de las variables del conjunto de datos

Las variables consideradas en el modelado corresponden
a los indicadores descritos en la subseccion “Variables
predictoras de fallos”, obtenidos mediante telemetria SNMP
desde Zabbix con muestreo de un minuto. Es fundamental
aclarar que este estudio no se basa en el analisis de paquetes
o tramas de red (frames) a nivel de enlace, sino en series
temporales de métricas de gestion agregadas. Por ejemplo, la
variable “tiempo de respuesta ICMP”’no implica la captura de
la trama del paquete ping, sino el registro del valor escalar (en

Latencia ICMP X1, X2, o
Octetos TX 1, L3, -
Octetos RX 11, T, e

Paquetes unicast TX Uy, Ug, ...
Paquetes unicast RX vy, V3, .

milisegundos) reportado por el agente SNMP en ese instante.

Para el analisis, los datos se estructuraron en ventanas
temporales de 60 minutos. Cada ventana representa una
instancia.® ejemplo de entrenamiento (N). Cada una de
estas ventanas contiene 60 mediciones consecutivas de cinco
indicadores SNMP: latencia ICMP, octetos transmitidos
(TX), octetos recibidos (RX), paquetes unicast TX y paquetes
unicast RX. La Figura@ilustra la representacion matricial (5
x 60) correspondiente a una ventana de datos crudos utilizada
como entrada base para ambos modelos supervisados.

Matriz 5 x 60

1 Xeo
Lo
Teo
»Ugo
- Vo

Figura 3: Estructura de la ventana temporal multivariada (5x60) utilizada como entrada para la CNN-1D.

La estructura de datos difiere segun el algoritmo utilizado,
aprovechando la naturaleza de cada modelo:

e Para Random Forest (Enfoque tabular de
caracteristicas agregadas): Se construyd una matriz
bidimensional de tamafio (N x M), donde N es el
namero total de ventanas (7 571) y M es el namero
de caracteristicas derivadas. A partir de los 60 valores
brutos de cada indicador dentro de una ventana, se
calcularon estadisticas descriptivas (Media, Desviacion
Estandar, Minimo y Maximo) para conformar el vector
de caracteristicas de entrada.

e Para CNN-1D (Enfoque de secuencias multivariadas
crudas): Se preservo la secuencialidad temporal de los
datos, estructurandolos como tensores tridimensionales
de tamafio (N x L x C), donde N es el numero de

ventanas, L es la longitud de la secuencia (pasos de
tiempo) y C corresponde a los canales o indicadores
brutos analizados simultdneamente. Esta estructura
permite a la red convolucional aplicar filtros a lo
largo de la dimension temporal para extraer patrones
secuenciales locales y globales en la evolucion de los
indicadores.

Procesamiento de datos
El procesamiento de datos se desarrolld en tres etapas
principales:
1. Depuracion inicial: se eliminaron registros duplicados
y con valores faltantes en cualquier indicador.

2. Agrupacion temporal: se agruparon los indicadores en



ventanas de 60 minutos (60 registros por ventana) para
generar ejemplos homogéneos.

3. Tratamiento de valores atipicos: se descartaron
observaciones fueras de rango normal.

La variable de salida se defini6 a partir del indicador
ICMP Ping: Y = 0 para estado normal y Y = 1
para fallo. Adicionalmente, se consideraron como fallos
los casos en que se detectd un reinicio del dispositivo
(variacién del uptime inferior al intervalo de consulta)
o el incumplimiento de umbrales operativos, tales como

tiempos de respuesta elevados o pérdida de paquetes. Estas
condiciones fueron tratadas de manera equivalente dentro
del conjunto supervisado. Tras el preprocesamiento se
obtuvieron 7 571 ejemplos, de los cuales 729 corresponden a
incidencias (Y = 1) y 6 842 indican estado normal (Y = 0).
Esta proporcion se mantiene en los indicadores analizados,
evidenciando un desbalance de clases que fue considerado
en el modelado. Las caracteristicas se generaron mediante
funciones estadisticas aplicadas a cada métrica, y su resumen
general se presenta en la Tabla[4]

Tabla 4: Funciones estadisticas aplicadas por indicador recolectado.

Indicador Media Desv. Est. Minimo Maximo Muestras Y=1 Y=0
ICMP response time Si Si Si Si 7571 729 6842
Jitter Si No No Si 7571 729 6842
Paquetes unicast enviados ETH Si Si Si Si 7571 729 6842
Paquetes unicast recibidos ETH Si Si Si Si 7571 729 6842
Trafico LAN Recibido Si Si Si Si 7571 729 6842
Trafico LAN Transmitido Si Si Si Si 7571 729 6842

Division de datos

El conjunto de datos se dividié mediante muestreo aleatorio
estratificado por clase en una proporcion de 75% para
entrenamiento y 25 % para prueba, preservando la relacion
entre clases. Se fijo una semilla aleatoria de 1 para garantizar
la reproducibilidad en todas las ejecuciones del algoritmo.

Evaluacion del modelo

La estrategia de evaluacion se diseflo para comparar, de forma
justa y reproducible, el desempefio predictivo de ambos
modelos: el modelo Random Forest (basado en caracteristicas
estadisticas agregadas) y la CNN-1D (basada en secuencias
temporales crudas).

En el caso de la CNN-1D, el analisis del comportamiento
del modelo permitié identificar los patrones temporales
que contribuyen a la deteccién de fallos. Las primeras
capas convolucionales aprendieron fluctuaciones locales en
la latencia ICMP y en el trafico LAN transmitido y recibido,
mientras que las capas mas profundas integraron relaciones
de mayor alcance entre el jitter, la disponibilidad y los
reinicios detectados en el uptime.

Aunque los valores brutos permanecen confidenciales por
razones institucionales, se proporciona esta descripcion
conceptual para garantizar transparencia sobre el proceso
de aprendizaje y las variables que mas influyen en las
predicciones del modelo. Todas las curvas y métricas (ROC,
PR, Fl-umbral y matrices de confusiéon) se generaron
directamente a partir de las probabilidades estimadas por los
modelos sobre el conjunto de prueba; para cada umbral entre
0y 1 se calcularon sistematicamente las métricas estandar de
Scikit-learn, 1o que permite reproducir matematicamente las
graficas a partir de yeest y (Y = 1).

Seleccion de hiperparametros

Para optimizar el modelo Random Forest se aplico una
blisqueda exhaustiva mediante GridSearchCV evaluando

distintas combinaciones de hiperparametros sobre el conjunto
de entrenamiento, mientras que el conjunto de prueba se
mantuvo independiente durante todo el proceso. El criterio
de seleccion fue la métrica F1-macro, debido a su capacidad
para equilibrar el desempefio en ambas clases en presencia
de desbalance. En resumen, se exploraron los siguientes
hiperparametros:

e n_estimators: niimero de arboles en el bosque,
explorado en el rango de 10 a 100 en incrementos de
10.

e criterion: funcion de impureza utilizada para dividir
los nodos, evaluando las opciones "gini", .®3tropy"
y "log_loss".

e max_features: proporcion de variables en cada
division, con valores de sqrt, log2 y None

Los demas hiperpardmetros se mantuvieron en sus valores
por defecto al no evidenciar mejoras relevantes.

Seleccion de caracteristicas

Se implementd selector de caracteristicas secuencia (SFS)
en modo forward, con una tolerancia de 1 x 1073 y
una validacién cruzada estratificada (k = 5), utilizando
el algoritmo Random Forest como modelo base y la
métrica F1-macro como criterio de evaluacion. EI método
permitio identificar un subconjunto reducido de variables sin
degradar el rendimiento, destacando aquellas asociadas a la
variabilidad del trafico LAN y dispersion de paquetes unicast.

Entrenamiento profundo

La CNN-1D se implement6é en PyTorch Lightning con un
maximo de 150 épocas, tamafio de lote de 64 y el optimizador
Adam (tasa de aprendizaje 1 x 107°). La arquitectura
consta de dos capas convolucionales 1D con 64 y 128
filtros (tamafios de kernel 5 y 3, respectivamente), cada
una seguida de una activacion ReLU y una operacion de
max pooling tras la primera convolucion. Posteriormente se



aplica un médulo de adaptive average pooling que reduce
la dimension temporal a un tnico valor por filtro y una
cabeza densa compuesta por una capa totalmente conectada
de 128 unidades con dropout (p = 0,2) y una capa lineal
de salida con dos neuronas. La representacion esquematica
completa de esta arquitectura se muestra en la Figura

Las probabilidades de clase se obtienen aplicando la funcion
softmax a los logits y, a partir de ellas, se realiza una busqueda
de umbral en el conjunto de validacion para maximizar la
métrica F1. El umbral 6ptimo asi obtenido se mantiene fijo
para la evaluacion final sobre el conjunto de prueba.

ConviD MaxPooling 128 filtros, k-3 Flatten
64 filtros, 128 filtros,
w k=5 —» pool2 —> k=3 —» 128 —p@
padding=2 padding=1
5= 60 64 x 30 64 =30 128 = 30 AdaptiveAvg 2 clases

Figura 4: Arquitectura de la red neuronal convolucional 1D.

Visualizacion de resultados

Para facilitar la interpretacion se generaron:

e Curvas ROC y PR en validacion y prueba, con
marcadores del umbral seleccionado.

e Matriz de confusion en el conjunto de prueba.
e Importancias de caracteristicas para Random Forest.

e Curvas de entrenamiento para la CNN para
evidenciar convergencia y descartar sobreajuste.

e Analisis de umbral: F1, precision y recall en funcién
del umbral en validacion.

e Comparativa: Random Forest vs. CNN.

Fase rigor

La validacion se realiz6 mediante validacion cruzada
estratificada (k-fold) aplicada sobre el conjunto de
entrenamiento para optimizar los hiperparametros y la
seleccion de caracteristicas. Posteriormente, se evalud el
desempeiio final sobre un conjunto de prueba independiente.
El umbral de decision se mantuvo constante respecto al
determinado en validacion. Las métricas principales fueron
F1-score de la clase fallo y AUC-PR, complementadas con
accuracy, precision, recall y AUC-ROC para proporcionar
una vision integral del comportamiento del modelo.

Consideraciones éticas y replicabilidad

La recoleccion de indicadores de red se realizd con
autorizacion del area de Tecnologias de la Informacion
y Comunicacion de la UPSE. El proceso se limitd a
informacion técnica de infraestructura (SNMP, ICMP,
paquetes transmitidos y uptime), sin incluir datos personales
ni contenidos de usuario. Por razones de seguridad
institucional, el conjunto de datos crudo y los scripts de
procesamiento no se publican. Sin embargo, se documentaron
integramente los procedimientos de preprocesamiento,
seleccion de caracteristicas y validacion. El estudio
mantiene trazabilidad completa y puede replicarse bajo
convenios autorizados en contextos similares, garantizando
la confidencialidad institucional.

3. Resultados

En esta seccion se presentan los resultados obtenidos con
los algoritmos de aprendizaje automatico aplicados a la

prediccion de fallos en la red LAN de la UPSE. Los
modelos se entrenaron a partir de los indicadores histéricos
capturados mediante SNMP y se evaluaron segun las métricas
definidas en la metodologia. De acuerdo con la revision
sistematica descrita en la Fundamentacién Teorica, los
algoritmos Random Forest y CNN-1D fueron seleccionados
por su desempefio en escenarios similares reportados en la
literatura, su capacidad para manejar datos de telemetria
y su equilibrio entre interpretabilidad y generalizacion. En
coherencia con los procedimientos detallados en Materiales
y Métodos, se presentan primero los resultados del modelo
Random Forest y posteriormente los de la CNN-1D.

Modelo Random Forest

Para optimizar el modelo Random Forest se aplicd un proceso
conjunto de seleccion de hiperparametros y seleccion de
caracteristicas. En la primera etapa se exploraron distintas
combinaciones de criterion, max_features y numero de
arboles. El mejor desempefio se obtuvo utilizando el
criterio entropy, la opcion sqrt para la seleccion aleatoria
de caracteristicas en cada nodo y 20 arboles, alcanzando
un Fl-macro de 86,83 %. Posteriormente se ejecutd un
proceso de seleccion secuencial de caracteristicas (SFS)
con el fin de identificar un subconjunto mas compacto de
variables relevantes. Este procedimiento selecciond cuatro
caracteristicas clave asociadas a la variabilidad y dispersion
del trafico de red: ICMP_response time jitter max,
Trafico LAN Transmitido_std, Trafico LAN Recibido_std
y Paquetes unicast recibidos ETH max.

En la Tabla 5] se compara el rendimiento obtenido en ambos
enfoques: el modelo optimizado mediante hiperparametros
y el modelo reducido con las mejor caracteristicas. En
general, ambos alcanzan un desempefio muy similar, con una
exactitud cercana al 97 %. El modelo basado en seleccion
de caracteristicas presenta una ligera mejora en precision
(96,24 % frente a 94,81 %) y en las métricas F1 (81,27 %)
y F2 (74,33 %), evidenciando una mayor proporcion de
predicciones positivas clasificadas correctamente. Por su
parte, el modelo completo optimizado por hiperparametros
obtuvo valores superiores en ROC-AUC (94,21%) y
PR-AUC (84,11%), indicando una mejor capacidad
discriminativa en escenarios de desbalance de clases. Estos
resultados muestran que la reduccion de caracteristicas
no compromete el rendimiento general del modelo y, en
algunos casos, mejora su estabilidad sin afectar su capacidad
predictiva.



Tabla S: Desempefio del modelo Random Forest con los mejores Hiperparametros vs Mejores Caracteristicas

Hiperparametros

Caracteristicas

Métrica
Accuracy 96,78 %
Precision 94,81 %
Recall 70,33%
Puntuacién F1 80,76 %
Puntuacién F2 74,16 %
ROC-AUC 94,21 %
PR-AUC 84,11 %

96,88 %
96,24 %
70,33%
81,27%
74,33%
91,69 %
81,21%

La Figura [§] muestra las matrices de confusion del modelo
Random Forest bajo dos configuraciones: (a) utilizando los
hiperparametros optimizados y (b) empleando el conjunto
reducido de caracteristicas seleccionadas. En ambos casos,
el modelo mantiene una proporciéon muy alta de verdaderos
negativos, superiores al 99,5 %, lo que evidencia una tasa de
falsas alarmas practicamente nula. En cuanto a la deteccion

(a} SE(F - Matriz de confusion (Mejores Hiperparametros)
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de fallos, el desempeifio es estable en ambas configuraciones:
el modelo identifica correctamente 128 de 182 fallos reales,
alcanzando un recall de 70,33 %. Estas matrices confirman
que la reduccion de caracteristicas no afecta la capacidad
discriminativa del modelo y que conserva un equilibrio
adecuado entre precision y sensibilidad al distinguir entre
condiciones normales y de fallo en la red LAN.

(b) E‘DRF - Matriz de confusion (Mejores Caracteristicas)
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Figura 5: Matrices de confusion del modelo Random Forest: (a) mejores hiperparametros y (b) mejores caracteristicas.

La Figura [f] muestra las curvas ROC obtenidas para el
modelo Random Forest bajo los dos enfoques evaluados:
(a) utilizando los hiperparametros optimizados y (b)
considerando Uinicamente las caracteristicas seleccionadas.
En ambos casos, las curvas se aproximan al extremo superior
izquierdo, lo que evidencia una alta sensibilidad y una baja
tasa de falsos positivos. El area bajo la curva confirma

RF - Curva ROC (Mejores Hiperparametros)

este comportamiento: el modelo optimizado alcanzé un
AUC de 94,21 %, mientras que el modelo reducido obtuvo
un AUC de 91,69 %. Estos valores indican que, aunque
la reduccion de caracteristicas disminuye ligeramente la
capacidad discriminativa, el desempefio global se mantiene
robusto y estable.

(b)

RF - Curva ROC (Mejores Caracteristicas)
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Figura 6: Curvas ROC del modelo Random Forest: (a) mejores hiperparametros y (b) mejores caracteristicas.



La Figura [7] presenta las curvas Precision-Recall de los
modelos: (a) utilizando los hiperparametros optimizados y
(b) empleando tinicamente las caracteristicas seleccionadas.
En ambos casos, las curvas mantienen valores elevados de
precision en los niveles altos de sensibilidad, lo que evidencia
una baja proporcion de falsos positivos incluso cuando se
incrementa el recall. El area bajo la curva confirma este

comportamiento: el modelo optimizado alcanzé un PR-AUC
de 84,11 %, mientras que el modelo reducido obtuvo un
PR-AUC de 81,21 %. Estos resultados indican que, aunque la
reduccion de caracteristicas produce una ligera disminucion
en la capacidad para mantener precision a medida que
aumenta el recall, el desempefio global permanece estable y
adecuado para escenarios con clases desbalanceadas.

(a) Curva Precision-Recall (Mejores Hiperparametros) (b) Curva Precision-Recall (Mejores Caracteristicas)
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Figura 7: Curvas Precision—Recall del modelo Random Forest: (a) mejores hiperparametros y (b) mejores caracteristicas.

La Figura [§] muestra la evolucién de las métricas del
modelo Random Forest en funcién del umbral de decision,
considerando los enfoques de (a) mejores hiperparametros
y (b) mejores caracteristicas. Las curvas corresponden a
las métricas de exactitud (azul), precision (naranja), recall
(verde) y F1 (rojo), de acuerdo con la leyenda mostrada
en la figura. En ambos casos, la exactitud se mantiene
elevada y estable en la mayor parte del rango evaluado, con
valores cercanos al 95%. La precision aumenta de manera
sostenida conforme se incrementa el umbral, superando el
90 % en los niveles mas altos. El recall, por el contrario, inicia
en valores elevados para umbrales bajos, pero disminuye

(a)

RF - Métricas vs. threshold (Mejores Hiperpardmetros)

progresivamente hasta estabilizarse alrededor del 60 %. La
puntuaciéon F1 se mantiene cercana al 70 %, mostrando un
comportamiento estable en la region optima y descendiendo
conforme el incremento del umbral reduce el niimero de
instancias positivas correctamente identificadas. El umbral
optimo determinado para maximizar la métrica F1 fue de
46 % para el modelo con hiperparametros optimizados y de
47 % para el modelo basado en caracteristicas seleccionadas.
En ambos casos, estos puntos reflejan un equilibrio adecuado
entre precision y sensibilidad, especialmente relevante en un
escenario con clases desbalanceadas.
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Figura 8: Métricas del modelo Random Forest en funcion del umbral: (a) mejores hiperparametros y (b) mejores caracteristicas.

La caida observada en la métrica F1 ante aumentos del
umbral se debe al desbalance del conjunto de datos con
aproximadamente el 9,6 % de fallos. En escenarios de este
tipo, incluso incrementos pequeiios del umbral reducen
rapidamente el recall, ya que menos instancias de la clase
positiva alcanzan probabilidades superiores al nuevo limite

de decision. Dado que F1 depende del equilibrio entre
precision y recall, su disminucion provoca que la curva
descienda con rapidez, aun cuando la precision aumente
ligeramente. Este comportamiento es consistente con la teoria
de clasificacion en datasets desbalanceados y se reproduce
también en los experimentos posteriores.



Modelo CNN-1D

Una vez analizado el desempeifio del modelo Random Forest,
se evalud el modelo basado en CNN-ID con el fin de
comparar su capacidad predictiva bajo la misma estructura
del problema. La Tabla|§|resume las métricas de desempefio
obtenidas por el modelo CNN-1D. El modelo alcanzé una
exactitud del 94,51 %, evidenciando un alto nivel de aciertos
globales en la clasificacion. La precision fue del 68,31 %,
lo que indica una proporcion moderada de predicciones
positivas correctas. El modelo detecté adecuadamente fallos

reales, alcanzando un recall del 73,10 %, mientras que la
puntuacion F1 obtuvo 70,62 %, reflejando un equilibrio
adecuado entre precision y sensibilidad. La puntuacion F2,
mas sensible al recall, alcanzé 72,09 %, mostrando un buen
desempeiio en escenarios donde es prioritario reducir falsos
negativos. Finalmente, las métricas ROC-AUC (92,70 %)
y PR-AUC (76,64 %) confirmaron una buena capacidad
discriminativa incluso bajo condiciones de desbalance de
clases, aunque con valores inferiores a los obtenidos con
Random Forest.

Tabla 6: Desempefio del modelo CNN-1D

Métrica

CNN-1D (%)

Accuracy
Precision
Recall
Puntuacién F1
Puntuacién F2
ROC-AUC
PR-AUC

94,51
68,31
73,10
70,62
72,09
92,70
76,64

La Figura [9] muestra la matriz de confusion obtenida por
el modelo CNN-1D. El modelo clasifico correctamente el
96,81 % de los estados normales (verdaderos negativos), con
una tasa de falsas alarmas del 3,19 %. En la deteccion de
fallos, alcanz6 un 71,35 % de aciertos (verdaderos positivos),
mientras que el 28,65% de los casos de fallo no fueron

detectados. Estos resultados indican que la CNN-1D logro
una buena capacidad para distinguir entre condiciones
normales y de fallo, con una ligera tendencia a priorizar
la reduccion de falsos positivos frente a la sensibilidad de
deteccion.
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Figura 9: Matriz de confusion del modelo CNN-1D.



La Figura [T0] muestra la curva ROC correspondiente al
modelo CNN-1D. La curva se aproxima al extremo superior
izquierdo, indicando una alta sensibilidad y baja tasa de falsos
positivos. El éarea bajo la curva de 92,70 % demuestra una
buena capacidad discriminativa del modelo para separar las

clases normales y de fallo. Estos resultados confirman que la
CNN-1D mantuvo un rendimiento competitivo, comparable
al obtenido con el modelo Random Forest, pese a utilizar una
arquitectura de mayor complejidad
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Figura 10: Curva ROC del modelo CNN-1D.

En la Figura [T1] se muestra el resultado de la curva
Precision—Recall del modelo CNN-1D, obteniendo 76.64 %.
La curva indica alta precision en los niveles iniciales de
sensibilidad, haciendo referencia a que el modelo mantiene
una baja tasa de falsos positivos en las predicciones mas

confiables. El area bajo la curva indica un buen equilibrio
entre precision y recall, demostrando que la red neuronal es
capaz de identificar fallos de manera efectiva, incluso ante la
presencia de desbalance en las clases.
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Figura 11: Curva ROC del modelo CNN-1D.

La Figura[T2|muestra la variacion en las métricas del modelo
CNN-1D segun el umbral de decision. La exactitud se
mantuvo elevada y estable en todo el rango, con valores
cercanos al 95%. La precision aumentd progresivamente
conforme se elevé el umbral, superando el 90 % en los niveles
mas altos. El recall mostrd el comportamiento opuesto:

inici6 con valores altos en umbrales bajos y disminuy6
hasta estabilizarse cerca del 60 %. La puntuacion F1 alcanzo
su valor maximo alrededor del 46 %, punto identificado
como umbral dptimo, donde el modelo logré un equilibrio
adecuado entre precision y sensibilidad.



CNN1D - Métricas vs. threshold
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Figura 12: Métricas del modelo CNN-1D en funcion del umbral.

Finalmente, de acuerdo con la comparacion general
presentada en la Tabla[7} el modelo Random Forest evidencio
el mejor desempeiio global entre los modelos evaluados. La
version optimizada mediante hiperparametros obtuvo una
exactitud superior al 96% y una precision del 94,81 %,
reflejando una alta capacidad para identificar correctamente
los estados normales y minimizar las falsas alarmas. La
variante con seleccion de caracteristicas mantuvo métricas
muy similares, lo que confirma que la reduccion del numero
de variables no afect6 de manera significativa su capacidad

predictiva, preservando su estabilidad y consistencia. Por otra
parte, la CNN-1D alcanz6 el mayor recall (73,10 %) entre los
modelos comparados, lo que indica una mayor sensibilidad
para detectar fallos reales, aunque con una precision menor
(68,31%), lo que incrementa la probabilidad de falsos
positivos. En términos de capacidad discriminativa, todos
los modelos superaron el 90 % en ROC-AUC, evidenciando
un rendimiento sélido incluso en condiciones de desbalance
de clases.

Tabla 7: Desempefio comparativo entre los modelos Random Forest y CNN-1D

RF Seleccion
Hiperparametros

Métrica

RF Seleccion de CNN-1D

caracteristicas

Accuracy 96,78 %
Precision 94,81 %
Recall 70,33 %
Puntuacién F1 80,76 %
Puntuacién F2 74,16 %
ROC-AUC 94,21 %
PR-AUC 84,11 %

96,88 % 94,51 %
96,24 % 68,31 %
70,33 % 73,10%
81,27 % 70,62 %
74,33% 72,09 %
91,69 % 92,70 %
81,21% 76,64 %

En conjunto, los resultados sugieren que Random Forest es
el modelo mas estable, consistente y explicable, adecuado
para su despliegue en entornos operativos de monitoreo. No
obstante, la CNN-1D constituye una alternativa mas sensible
ante eventos de fallo, lo que la convierte en un enfoque
complementario para escenarios en los que la prioridad es
maximizar la deteccion temprana de incidencias en redes
LAN.

4. Discusion

En el escenario experimental, un fallo en la red LAN
se defini6 como la presencia de condiciones anomalas
detectadas en los puntos de acceso, tales como pérdida
de conectividad ICMP, incrementos abruptos de tiempo de
respuesta, picos de jitter, congestion repentina del trafico

LAN, caida temporal del servicio o ausencia de paquetes
unicast. Estos eventos representan las incidencias reales que
afectan la continuidad del servicio en la red LAN de la UPSE
y constituyen la base sobre la cual los modelos aprendieron
patrones para anticipar estados de fallo.

Los resultados demostraron que ambos modelos, Random
Forest y la CNN-1D, alcanzaron un desempefo solido en la
prediccion de fallos en la red LAN de la UPSE. El modelo
Random Forest registré una exactitud superior al 96 % y un
equilibrio adecuado entre precision, aproximadamente 94 %
y un recall cercano a 70 %. Esto evidencia su capacidad para
detectar incidentes sin incrementar las falsas alarmas. De
manera similar, la CNN-1D logrd una exactitud del 94 % y
un recall ligeramente mayor con 73,10 %, lo que confirma su
habilidad para reconocer secuencias anémalas en indicadores
temporales.



La diferencia entre ambos modelos se debi6 en gran medida
al fuerte desbalance de clases en el conjunto de datos
(729 fallos frente a 6 842 normales). Este desequilibrio
influy6 directamente en el rendimiento de ambos algoritmos.
El algoritmo Random Forest tendié a favorecer la clase
mayoritaria y logré una alta precision, pero menor recall.
La CNN-1D mostré una mayor sensibilidad hacia la clase
minoritaria y detecté mas fallos a costa de un aumento de
falsos positivos. Esta relacion inversa entre precision y recall
destaca la complementariedad de ambos modelos y justifica
el uso de una estrategia hibrida, en la que el algoritmo
Random Forest actia como un filtro de alta confianza
y el algoritmo CNN-1D como un detector sensible. Tal
combinacion permitiria mitigar los efectos del desbalance y
mejorar la deteccion temprana de fallos en entornos reales de
red.

Estos hallazgos coinciden parcialmente con lo reportado por
Myrzatay et al. [19] [19 p. 9] quienes integraron técnicas
de suavizado exponencial con algoritmos supervisados para
predecir fallos en switches LAN. Aunque sus resultados
mostraron un desempefio aceptable, con precision de 81,2 %
y recall de 61,9 %, el presente estudio super6 dichas métricas
al alcanzar valores de F1 de 80% y recall de 70% en la
red de la UPSE. Esta mejora se debe al uso de indicadores
SNMP mas representativos y a un marco de validacion mas
riguroso, que permitié a los modelos capturar patrones mas
consistentes relacionados con las condiciones de error.

En términos comparativos, Random Forest demostro una
estabilidad y generalizacién comparativamente mayores,
mientras que la CNN-1D destacé por su capacidad de
adaptacion a patrones temporales complejos. Estos resultados
concuerdan con los hallazgos de Murphy et al. [42], quienes
reportaron un mejor rendimiento de los modelos basados
en arboles bajo restricciones de datos en comparacion con
las redes profundas con mayor sensibilidad a las series
temporales. En general, los resultados demuestran que
ambos modelos son complementarios y ttiles en escenarios
operativos con diferente granularidad temporal.

La seleccion secuencial de caracteristicas (SFS) confirmo
que el subconjunto reducido de variables —ICMP response
time jitter max, Trafico LAN Transmitido std, Trafico LAN
Recibido std y Paquetes unicast recibidos ETH max—
conservo un rendimiento equivalente al modelo completo,
alcanzando un F1 de 81% y un AUC-ROC de 91,69 %.
Esto coincide con Edozie et al. [43|] quienes resaltan la
relevancia de las métricas de variabilidad y dispersion en
la prediccion de anomalias. La reduccion de variables sin
pérdida de rendimiento refuerza la eficiencia del enfoque
propuesto y su aplicabilidad en entornos con recursos de
monitoreo limitados.

Los valores obtenidos de ROC- AUC (94 % en Random
Forest y 92% en CNN-1D) y de PR-AUC (84% en
Random Forest y 77% en CNN-1D). Estos resultados
confirmaron que los indicadores SNMP, procesados y
normalizados adecuadamente, pueden servir como base
fiable para la prediccion de fallos en redes universitarias.
Ademas, destacaron la viabilidad de aplicar algoritmos
supervisados como parte de un sistema de gestion proactiva
en infraestructuras reales.

Las limitaciones del estudio incluyeron el desbalance
de clases, el uso de una unica topologia (38 puntos
de acceso Ruckus) y el tamafio limitado del conjunto

de datos. Sin embargo, el disefio experimental —con
validacion cruzada estratificada y calibraciéon de umbral
en validacion— minimizé el riesgo de sobreajuste y
garantiz0 la reproducibilidad de los resultados. En trabajos
futuros se podria explorar técnicas de balanceo sintético
(SMOTE), arquitecturas hibridas basadas en Transformers
y evaluaciones en redes heterogéneas para ampliar la
generalizacion del modelo.

A diferencia de los estudios previos centrados en redes
corporativas o infraestructuras controladas, el escenario
universitario analizado presenta una dindmica temporal
mas compleja, con variaciones horarias pronunciadas,
alta movilidad de usuarios y trafico heterogéneo asociado
a dispositivos personales, laboratorios académicos y
actividades de docencia. Este comportamiento explica las
diferencias observadas respecto a trabajos como Myrzatay
et al [19]. y Murphy et al. [42], donde las redes analizadas
exhibian menor variabilidad y condiciones operativas mas
estables. En este contexto, la mayor sensibilidad de la
CNN-1D a patrones transitorios y la mayor estabilidad
del modelo Random Forest ante ruido estadistico reflejan
caracteristicas propias de la telemetria SNMP en campus
universitarios. Por tanto, los resultados no se limitan
a replicar tendencias de la literatura, sino que aportan
evidencia especifica sobre como estos algoritmos responden
ante patrones reales de uso académico, fortaleciendo su
aplicabilidad en entornos educativos.

En resumen, la evidencia empirica confirmé que la prediccion
de fallos mediante aprendizaje supervisado es una estrategia
viable y eficaz para las redes LAN universitarias. La
combinacion de modelos explicables y redes profundas
representa un avance tangible hacia la automatizacion del
monitoreo y la optimizacién operativa de la infraestructura
de red de la UPSE.

5. Conclusiones

El estudio confirmé que los indicadores obtenidos mediante
SNMP —latencia ICMP, trafico LAN y paquetes unicast—
contienen informacion suficiente para anticipar eventos de
fallo en la red universitaria, entendidos operacionalmente
como pérdida de respuesta ICMP, reinicios inesperados
(cambios en el uptime) o degradacion sostenida del
rendimiento. Estos eventos permitieron construir un conjunto
de datos supervisado adecuado para la prediccion en entornos
reales.

Los modelos Random Forest y CNN-1D demostraron
fortalezas complementarias: Random Forest destaca por
su alta precision y baja generacion de falsas alarmas,
mientras que la CNN-1D exhibe mayor sensibilidad ante
patrones andmalos en secuencias temporales, detectando un
numero superior de fallos reales. Esta dualidad respalda la
adopcion de un esquema hibrido, en el que la CNN-1D
opere como detector temprano y Random Forest como
mecanismo de verificacion. De manera operativa, se
recomienda mantener los umbrales calibrados mediante
validacion interna, priorizando aquellos que maximizan la
métrica F1 en escenarios con clases desbalanceadas.

La principal limitacion del estudio fue el desbalance natural
del dataset, tipico de redes estables donde los fallos son
poco frecuentes. Para investigaciones futuras, se sugiere
explorar métodos de balanceo como SMOTE o modelos



generativos Unicamente para ampliar la representacion de
la clase minoritaria, sin sustituir a los modelos predictivos
principales. También sera pertinente validar el modelo
en otras topologias académicas y considerar arquitecturas
modernas de series temporales, como Transformers.

En conjunto, los resultados evidencian que la combinacion
de modelos explicables y redes profundas es una
estrategia eficaz para fortalecer la gestion predictiva de
la infraestructura de red de la UPSE. Este enfoque sienta
las bases para una transicion sostenible hacia sistemas de
monitoreo proactivo impulsados por inteligencia artificial en
entornos universitarios.
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