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Resumen

En redes universitarias como la de la Universidad

Estatal Península de Santa Elena, la gestión LAN

sigue siendo reactiva, sin historial ni alertas tempranas.

Este estudio propone aplicar algoritmos supervisados

de aprendizaje automático, seleccionados con base

en evidencia científica, para construir y evaluar un

modelo predictivo de fallos a partir de telemetría SNMP

obtenida mediante Zabbix. Se utilizó una metodología

combinada de Investigación en Ciencias del Diseño

(DSR) y CRISP–DM, con ventanas de 60 minutos

sobre 7571 ejemplos (729 fallos y 6 842 normales). Se

compararon dos modelos: Random Forest, entrenado

con características estadísticas, y una red neuronal

convolucional unidimensional, aplicada sobre secuencias

multivariadas. Random Forest alcanzó una exactitud

del 96,88%, mientras que la red neuronal logró un

recall del 73,10%. Los resultados demuestran su

complementariedad y evidencian que la combinación de

ambos modelos favorece una gestión proactiva de la red

institucional, reduciendo los tiempos de respuesta ante

incidencias.

Palabras clave: Aprendizaje automático, Análisis

predictivo, Gestión de redes, Redes universitarias, SNMP
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Abstract

In university networks such as the one at the Universidad

Estatal Península de Santa Elena, LAN management

remains predominantly reactive, lacking historical

records and early-warning mechanisms. This study

proposes the application of supervised machine-learning

algorithms, selected based on scientific evidence, to build

and evaluate a predictive failure-detection model using

SNMP telemetry collected through Zabbix. A combined

Design Science Research (DSR) and CRISP–DM

methodology was applied, with 60-minute windows over

7 571 samples (729 failures and 6 842 normal cases).

Two approaches were compared: a Random Forest model

trained on statistical features, and a one-dimensional

convolutional neural network applied to multivariate

sequences. Random Forest achieved an accuracy of 96.88

%, while the neural network reached a recall of 73.10

%. The results show the complementary nature of both

models and demonstrate that their combined use supports

proactive institutional network management, reducing

response times to incidents.

Keywords: Machine learning, Predictive analytics,

Network management, University networks, SNMP.
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1. Introducción

El avance tecnológico y la digitalización han convertido a

las redes de datos en un pilar esencial para las funciones

académicas y administrativas. Esto exige mecanismos de

seguimiento que vayan más allá del monitoreo reactivo

[1]. La operación de aulas virtuales, sistemas de matrícula,

repositorios académicos y servicios de identidad demanda

visibilidad continua del rendimiento de la red. Plataformas

que recopilan indicadores a través del Protocolo simple de

administración de red (SNMP) son una forma práctica de

obtener datos. Esto posibilita integrar registros históricos y

facilitar la toma de decisiones [2, 3]. Existen herramientas

como PRTG que en conjunto con firewalls avanzados

combinan visualización, correlación e identificación de

ataques en tiempo real [4]. No obstante, garantizar los niveles

adecuados en la calidad del servicio, como latencia, pérdida

de paquetes y disponibilidad, resulta ser un reto en la gestión

de redes en entornos universitarios [5].

Las universidades enfrentan la presión de garantizar

conectividad permanente. Aunque las plataformas de

monitoreo institucional recolectan indicadores, su enfoque

sigue siendo reactivo y carece de predicción. En la

Universidad Estatal Península de Santa Elena (UPSE), la

herramienta The Dude permite observación en tiempo real

[6], pero no conserva registros históricos ni genera alertas

anticipadas. Alternativas como Zabbix, Nagios o Prometheus

ofrecen recopilación de datos SNMP y disponibilidad,

transformando los datos operativos en conocimiento de

gestión [7].

Ante esta limitación, se genera la necesidad de contar con

una gestión proactiva. Esto se logra al utilizar algoritmos

supervisados capaces de reconocer patrones en registros

históricos de la red. Diversos estudios han demostrado que

algoritmos como los Árboles de Decisión, Random Forest

y Redes Neuronales resultan ser eficaces en la detección y

clasificación de anomalías. Así, se confirma su utilidad en

entornos universitarios [8]. Estos métodos se incorporan cada

vez más a las prácticas de monitoreo avanzado, donde la

telemetría y elMachine Learning (ML) permiten transformar

datos en predicciones y acciones preventivas [9]. El uso

de modelos predictivos reduce el tiempo de inactividad y

optimiza recursos al priorizar intervenciones según el nivel

de riesgo [10], un aspecto clave para mantener la calidad de

servicio [11].

Asimismo, la evidencia empírica reporta altos niveles de

desempeño en algoritmos supervisados aplicados a bases

SNMP–MIB [12], así como experiencias colaborativas

orientadas a la detección de fallos y ataques DDoS mediante

aprendizaje automático [13]. Estos enfoques se basan en el

aprendizaje supervisado, donde los modelos se entrenan con

ejemplos etiquetados (normal o fallo) para minimizar el error

esperado [14].

La predicción de fallos en redes LAN no solo es un reto

técnico, sino también operativo. En entornos académicos,

una interrupción prolongada puede afectar la continuidad

institucional, retrasar procesos administrativos y generar

costos adicionales por la recuperación del servicio. El

presente estudio se desarrollará en la red LAN de la

UPSE, utilizando el paradigma gestor-agente SNMP. Se

recolectarán series temporales de contadores de octetos

de entrada y salida y variables de estado, como la

latencia ICMP, la pérdida de paquetes y la disponibilidad,

mediante herramientas institucionales. Con esta información

se construirá un conjunto de datos etiquetado que represente

tanto condiciones de fallo como de operación normal [15].

Finalmente, este entorno representa un escenario adecuado

para evaluar el impacto de modelos de aprendizaje en

métricas reales de producción [16]. La investigación se

orienta en responder la siguiente pregunta: ¿Qué algoritmos

supervisados, seleccionados con base en evidencia científica,

predicen con mayor eficacia los fallos en la red LAN

de la UPSE usando indicadores históricos SNMP, y qué

desempeño (accuracy, precision, recall, F1, AUC-ROC)

alcanzan frente a líneas base y entre sí?

En este contexto y con el fin de responder a la pregunta

de investigación se propone un objetivo principal: Aplicar

algoritmos supervisados de aprendizaje automático,

seleccionados con base en evidencia científica, para evaluar

su rendimiento en la predicción de fallos en la red LAN de

la Universidad Estatal Península de Santa Elena, utilizando

métricas históricas recolectadas del entorno institucional.

El estudio se desarrolló a partir de indicadores históricos

recolectados mediante telemetría SNMP, incluyendo

latencia, disponibilidad, pérdida de paquetes y tráfico de

red. Este enfoque permitió identificar los periodos de mayor

consumo de ancho de banda y validar el desempeño de los

modelos mediante métricas como exactitud, precisión, recall

y área bajo la curva ROC, fortaleciendo la gestión proactiva

de la infraestructura institucional.

FUNDAMENTACIÓN TEÓRICA

Gestión de redes LAN y monitoreo SNMP

En el modelo gestor–agente de SNMP, cada dispositivo

expone objetos MIB como contadores de interfaz y estados

operativos. El gestor consulta periódicamente dichos objetos

para persistir las lecturas como series temporales en su

base de datos. En este estudio, ese rol lo cumple Zabbix,

cuya función es consolidar indicadores por dispositivo o

interfaz para su análisis posterior, evitando configuraciones

redundantes y habilitando la explotación histórica de la

telemetría [14] [[4] p. 14].

Variables predictoras de fallos

El conjunto de predictores se fundamenta en objetos MIB

de interfaz y sondeo activo que capturan desempeño y

disponibilidad [17]:

• Octetos de entrada / Octetos de salida: contadores

acumulativos por interfaz; sus diferencias por intervalo

estiman ancho de banda (bit/s).

• Paquetes Unicast de entrada y Salida normal /

Paquetes Unicast de entrada y Salida con errores:

evidencian degradaciones físicas o de capa 2.

• Latencia y pérdida ICMP: indica el tiempo y el

porcentaje de respuesta, proporcionando información

para evaluar la disponibilidad y la calidad de servicio.

• Disponibilidad y reinicios: reinicio del tiempo

de actividad puede utilizarse para identificar

interrupciones en las series temporales.

Estos indicadores, almacenados como series temporales,

facilitan la creación del conjunto de datos monitorizado para

la predicción de fallos.

© 2025 Derechos de autor: Fernández A.| Andrade A. 91|



Revista Científica y Tecnológica UPSE • e-ISSN 1390-7697 •Vol.12 N°2 • Edición Diciembre 2025

Criterios de selección de los algoritmos supervisados

Para la selección de los algoritmos se definieron criterios

objetivos basados en la literatura reciente:

• Evidencia de aplicación en redes académicas o

empresariales con telemetría SNMP, MIB o protocolos

equivalentes.

• Reporte de métricas comparables entre estudios

(accuracy, precision, recall, F1 y AUC-ROC).

• Capacidad de generalización y razonable costo

computacional para entornos de producción.

La Tabla 1 presenta los algoritmos identificados entre 2019

y 2025, organizados por tipo de aprendizaje, precisión

reportada, interpretabilidad y escalabilidad. Se observa que

los algoritmos supervisados, como Random Forest (RF),

Máquinas de Vectores de Soporte (SVM), Árboles de

decisión, Gradient Boosting y k-vecinos más cercanos

(k-NN), dominan la literatura, mientras que los modelos

profundos como redes neuronales convolucionales (CNN),

redes neuronales recurrentes de tipo LSTM y perceptrones

multicapa (MLP) muestran métricas superiores (95–98%)

aunque con mayor demanda computacional.

Los métodos no supervisados e híbridos—por ejemplo, redes

generativas antagónicas (GAN), K-means, redes profundas

de creencia (DBN) y redes neuronales de grafos con atención

multiagente (GNN+MAB)— aparecen en menor proporción

y se orientan principalmente a tareas de agrupamiento o

generación de datos sintéticos.

Tabla 1: Comparación entre algoritmos para detección de fallos en redes (2019–2025): supuestos, métricas típicas, complejidad

y consideraciones de implementación.

Tipo de Aprendizaje Algoritmo Precision /
Accuracy

Interpretación Escalabilidad Fuente

Supervisado

Árbol de decisión Media-alta
(70–90 %)

Alta Limitada en grandes
datasets

[18, 19, 20, 21, 22,
23]

CNN Muy alta (>95 %) Baja Alta (entrenamiento
distribuido)

[20, 24, 25, 26, 27,
28, 29]

Gradient Boosting Muy alta (90–98 %) Media Alta [23, 26, 30]

k-Nearest Neighbors
(KNN)

Media (75–90 %) Alta Baja en datasets
grandes

[20, 21, 22, 23, 31,
32]

LSTM Muy alta (>95 %) Baja Alta (requiere
GPUs)

[24, 27]

MLP Alta (85–95 %) Baja Alta [22, 23, 25, 26]

Naive Bayes Media (70–85 %) Alta Muy alta [21, 22, 32]

Random Forest Alta (90–95 %) Media Alta [19, 20, 22, 23, 26,
27, 31, 32, 33, 34,
35]

Regresión Logística Media (70–85 %) Muy alta Alta [19, 22, 23, 35]

Support Vector
Machine

Alta (85–95 %) Media Limitada (>10k
ejemplos)

[19, 21, 22, 23, 26,
31, 35]

Transformers
autorregresivo

Muy alta (>97 %) Baja Muy alta (requiere
GPU/TPU)

[36]

No supervisado

GAN Muy alta (datos
sintéticos � reales)

Muy baja Limitada
(entrenamiento
inestable)

[37, 38]

K-means Variable (70–90 %) Media Muy alta [33]

WSBM Alta (85–95 %) Media Alta en grafos
medianos

[39]

Híbrido
DBN Alta (85–95 %) Baja Media [26]

GNN + MAB Muy alta (95–97 %) Baja-media Alta (aplicable a
IoT/SDN)

[40]

Comparativa y justificación final

La bibliografía reciente destaca dos familias de algoritmos.

Los superficiales, basados en árboles [18, 23, 26, 27, 30, 35]

o Máquinas de Vectores de Soporte [19, 21, 22, 23, 26, 31,

35]. Por otra parte, los algoritmos profundos basados en redes

neuronales [20, 22, 23, 24, 25, 26, 27, 28, 29, 36, 37, 38, 40].

En la Tabla 2 se resumen los algoritmos por tipo (superficial

o profundo), junto con su rasgo distintivo y la frecuencia

observada en la literatura.

En la revisión PRISMA, el algoritmo Random Forest es
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el más aplicado con 11 trabajos. Seguido de SVM con

7 y Árboles de decisión que tiene 6 aplicaciones. Las

aplicaciones para los algoritmos profundos fueron de 7 para

CNN y 4 para MLP.

Tabla 2: Algoritmos más aplicados por profundidad.

N Tipo Algoritmo Característica diferencial Prec./Acc. Fuente

1

Superficial

Random Forest Robusto contra overfitting,
estándar en benchmarks

Alta (90–95 %) [19, 20, 22, 23, 26, 27, 31, 32, 33, 34, 35]

2 SVM Datos pequeños con fronteras no
lineales

Alta (85–95 %) [19, 21, 22, 23, 26, 31, 35]

3 Árbol dec. Base de ensambles (RF, GB,
XGBoost)

Media-alta (70–90 %) [18, 19, 20, 21, 22, 23]

1
Profundo

CNN Extrae patrones relevantes
automáticamente

Muy alta (>95 %) [20, 24, 25, 26, 27, 28, 29]

2 MLP Red neuronal densa con capas
ocultas

Alta (85–95 %) [22, 23, 25, 26]

La preselección de Random Forest y CNN-1D se basó en

su desempeño superior en la literatura reciente, su equilibrio

entre interpretabilidad y capacidad de generalización, y su

aplicabilidad a conjuntos de datos multivariados derivados

de telemetría SNMP.

Los trabajos previos han demostrado la utilidad de estos

modelos en la detección de anomalías, aunque la mayoría

se enfoca en redes heterogéneas o entornos controlados. Este

estudio aborda un segmento de red universitaria real, basada

en telemetría SNMP, aportando evidencia bibliográfica sobre

la aplicación de estos métodos en contextos institucionales.

2. Materiales y Métodos

La presente investigación es de tipo aplicado, con un enfoque

cuantitativo y predictivo. Está orientada a identificar y

evaluar algoritmos de aprendizaje supervisado para predecir

fallos en la red LAN de la UPSE a partir de indicadores

históricos SNMP.

Se utilizaron dos algoritmos: Random Forest (RF), que utiliza

vectores de características tabulares agregados por ventana, y

una RedNeuronal Convolucional 1D (CNN-1D), que procesa

secuencias multivariadas crudas de 60 pasos por ventana.

Esta combinación permitió comparar modelos explicables

(RF) con modelos de alto rendimiento (CNN-1D), buscando

optimizar la precisión y generalización del sistema de

predicción.

El estudio se basó en la metodología de Investigación en

Ciencias del Diseño (DSR, por sus siglas en inglés), que

incluye tres fases principales: relevancia, diseño y rigor [41].

En la fase de relevancia se definió el problema de la gestión

reactiva de fallos en la LAN de la UPSE y se caracterizó el

contexto operativo. Se tomaron datos históricos de telemetría

vía SNMP durante el horario académico. Este enfoque

garantizó un impacto institucional medible en términos de

continuidad de servicio y tiempos de respuesta.

En la fase de diseño, se construyó el artefacto experimental.

En el que se incluye una secuencia de datos con indicadores

SNMP desde Zabbix. Los datos se limpiaron, posteriormente

se etiquetaron y segmentaron en ventanas temporales.

Finalmente, se realizó la extracción de características y la

implementación de los modelos supervisados seleccionados:

Random Forest y CNN-1D. Para el desarrollo del modelo

Random Forest se utilizó la biblioteca Scikit-learn.

Para el modelo CNN-1D se aplicó Lightning sobre PyTorch.

Para la búsqueda de hiperparámetros y selección de

características se empleó la métrica F1-macro como criterio

de evaluación. El desempeño de los modelos se evaluó

mediante validación cruzada estratificada, garantizando

consistencia entre los experimentos.

Entre las métricas reportadas se incluye accuracy, precision,

recall, F1-Score, F2-Score, ROC-AUC y PR-AUC,

complementadas con análisis comparativos entre los modelos

y sus umbrales. Asimismo, se fijaron semillas aleatorias para

asegurar la reproducibilidad en los resultados.

Los datos se tomaron de 38 puntos de acceso de la marca

Ruckus distribuidos de la siguiente forma: 2 del modelo

R320, 4 del modelo T350C y 32 del modelo R650. Los

datos brutos y scripts no se publican por motivos de

confidencialidad.

Sin embargo, la investigación preservó la trazabilidad

y replicabilidad interna mediante documentación técnica

detallada. En conjunto, la metodología DSR permitió diseñar,

evaluar y transferir una solución predictiva aplicable a

entornos reales de redes universitarias como la UPSE, tal

como se muestra en la Figura 1.
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Figura 1:Metodología DSR aplicada al desarrollo del sistema de predicción de fallos en la red LAN de la UPSE.

Ciclo de relevancia La primera fase consistió en una

revisión exhaustiva de la literatura científica sobre el uso del

aprendizaje automático en Redes LAN enfocada en entornos

universitarios y públicos. Esta revisión permitió identificar

las principales causas de fallos en la red y los indicadores

que pueden anticiparlos. En síntesis, los fallos observados en

la red LAN de la UPSE se originan principalmente por (i)

la sobrecarga de enlaces y puertos, (ii) la degradación física

en las capas 1 y 2, (iii) la saturación y reinicios de equipos,

y (iv) la elevada demanda de usuarios durante las horas

de mayor actividad académica. Estas condiciones derivan

en congestión y degradación del rendimiento, provocando

interrupciones en los servicios académicos, deterioro de la

calidad de servicio (QoS), aumento de incidentes gestionados

por la mesa de ayuda y afectación reputacional para la

institución.

Se aplicó una revisión estructurada de la literatura en

Scopus y Web of Science para identificar estudios que

aplicaran algoritmos supervisados a la predicción de fallos

en redes LAN con telemetría SNMP/MIB. Del total de

269 registros iniciales, se eliminaron duplicados y estudios

no pertinentes, seleccionándose finalmente 31 trabajos

con métricas comparables y contextos afines a redes

universitarias. Esta base permitió definir los algoritmos

candidatos para el modelado.

Ciclo de diseño

Para el ciclo de diseño se aplicó la metodología CRISP–DM

para construir el artefacto predictivo. En la fase de

comprensión del negocio se estableció el objetivo de anticipar

fallos en la red LAN de un edificio académico de la UPSE.

La fase de comprensión y preparación de datos se materializó

en un pipeline que recolecta telemetría SNMP desde Zabbix,

estandariza y alinea las series temporales. Los datos se

agruparon en ventanas de 60 minutos con etiquetado de

normal o fallo. Una vez agrupado se extrajeron características

estadísticas como la media, desviación estándar, el mínimo,

el máximo y el jitter para el indicador tiempo de respuesta.

Posteriormente, en la aplicación de los algoritmos, el modelo

Random Forest se entrenó sobre características extraídas,

mientras que la CNN-1D se aplicó con los datos crudos.

Ambos modelos fueron entrenados y validados mediante

estrategias mixtas de particionado, reservando un conjunto

independiente para la prueba final. Los detalles de ajuste de

hiperparámetros, selección de características y calibración de

umbrales se describen en la sección Evaluación del modelo.

La arquitectura general del sistema y el flujo metodológico

completo, desde la recolección SNMP hasta la validación de

los modelos, se detallan en la Figura 2.

Figura 2: Flujo metodológico de construcción de modelos supervisados según la metodología CRISP–DM.
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Conjunto de datos

Los datos se recolectaron mediante SNMP con Zabbix en

un edificio académico de la UPSE, ubicado en la zona este

del campus. La recolección se hizo durante cuatro semanas,

desde el 25 de agosto al 17 de septiembre del 2025, de lunes

a viernes entre las 07:00 y las 19:00 horas. Se recolecta los

datos en este periodo debido a que es cuando el tráfico de

usuarios es más representativo. El total de datos almacenados

alcanzó los 547 874 registros. Los datos están distribuidos de

la siguiente forma: Semana 1 (136 925), Semana 2 (136 990),

Semana 3 (136 991) y Semana 4 (136 968). Los indicadores

incluyeron disponibilidad (ping exitoso/fallido), tiempo de

respuesta ICMP, octetos transmitidos y recibidos, paquetes

unicast enviados y recibidos y uptime para identificar

reinicios en los dispositivos. En la Tabla 3 se detalla el total

de datos recolectados por dispositivo, así como la cantidad

de ocasiones en que se registraron o no incidencias. Las

proporciones se mantienen consistentes entre modelos, con

aproximadamente un 9,6% de ventanas con fallos, lo que

garantiza una representación adecuada de ambas clases para

la validación cruzada y la comparación entre algoritmos

supervisados.

Tabla 3: Algoritmos más aplicados por profundidad.

Dispositivo Cantidad Normal Fallo Total

R320 2 407 55 462

T350C 4 855 77 932

R650 32 5580 597 6177

Total 38 6842 729 7571

Descripción de las variables del conjunto de datos

Las variables consideradas en el modelado corresponden

a los indicadores descritos en la subsección “Variables

predictoras de fallos”, obtenidos mediante telemetría SNMP

desde Zabbix con muestreo de un minuto. Es fundamental

aclarar que este estudio no se basa en el análisis de paquetes

o tramas de red (frames) a nivel de enlace, sino en series

temporales de métricas de gestión agregadas. Por ejemplo, la

variable ”tiempo de respuesta ICMP”no implica la captura de

la trama del paquete ping, sino el registro del valor escalar (en

milisegundos) reportado por el agente SNMP en ese instante.

Para el análisis, los datos se estructuraron en ventanas

temporales de 60 minutos. Cada ventana representa una

ïnstancia.o ejemplo de entrenamiento (N). Cada una de

estas ventanas contiene 60 mediciones consecutivas de cinco

indicadores SNMP: latencia ICMP, octetos transmitidos

(TX), octetos recibidos (RX), paquetes unicast TX y paquetes

unicast RX. La Figura 3 ilustra la representación matricial (5

× 60) correspondiente a una ventana de datos crudos utilizada

como entrada base para ambos modelos supervisados.

Figura 3: Estructura de la ventana temporal multivariada (5×60) utilizada como entrada para la CNN-1D.

La estructura de datos difiere según el algoritmo utilizado,

aprovechando la naturaleza de cada modelo:

• Para Random Forest (Enfoque tabular de

características agregadas): Se construyó una matriz

bidimensional de tamaño (N x M), donde N es el

número total de ventanas (7 571) y M es el número

de características derivadas. A partir de los 60 valores

brutos de cada indicador dentro de una ventana, se

calcularon estadísticas descriptivas (Media, Desviación

Estándar, Mínimo y Máximo) para conformar el vector

de características de entrada.

• ParaCNN-1D (Enfoque de secuenciasmultivariadas

crudas): Se preservó la secuencialidad temporal de los

datos, estructurándolos como tensores tridimensionales

de tamaño (N x L x C), donde N es el número de

ventanas, L es la longitud de la secuencia (pasos de

tiempo) y C corresponde a los canales o indicadores

brutos analizados simultáneamente. Esta estructura

permite a la red convolucional aplicar filtros a lo

largo de la dimensión temporal para extraer patrones

secuenciales locales y globales en la evolución de los

indicadores.

Procesamiento de datos

El procesamiento de datos se desarrolló en tres etapas

principales:

1. Depuración inicial: se eliminaron registros duplicados

y con valores faltantes en cualquier indicador.

2. Agrupación temporal: se agruparon los indicadores en
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ventanas de 60 minutos (60 registros por ventana) para

generar ejemplos homogéneos.

3. Tratamiento de valores atípicos: se descartaron

observaciones fueras de rango normal.

La variable de salida se definió a partir del indicador

ICMP Ping: Y = 0 para estado normal y Y = 1

para fallo. Adicionalmente, se consideraron como fallos

los casos en que se detectó un reinicio del dispositivo

(variación del uptime inferior al intervalo de consulta)

o el incumplimiento de umbrales operativos, tales como

tiempos de respuesta elevados o pérdida de paquetes. Estas

condiciones fueron tratadas de manera equivalente dentro

del conjunto supervisado. Tras el preprocesamiento se

obtuvieron 7 571 ejemplos, de los cuales 729 corresponden a

incidencias (Y = 1) y 6 842 indican estado normal (Y = 0).

Esta proporción se mantiene en los indicadores analizados,

evidenciando un desbalance de clases que fue considerado

en el modelado. Las características se generaron mediante

funciones estadísticas aplicadas a cada métrica, y su resumen

general se presenta en la Tabla 4.

Tabla 4: Funciones estadísticas aplicadas por indicador recolectado.

Indicador Media Desv. Est. Mínimo Máximo Muestras Y=1 Y=0

ICMP response time Sí Sí Sí Sí 7571 729 6842

Jitter Sí No No Sí 7571 729 6842

Paquetes unicast enviados ETH Sí Sí Sí Sí 7571 729 6842

Paquetes unicast recibidos ETH Sí Sí Sí Sí 7571 729 6842

Trafico LAN Recibido Sí Sí Sí Sí 7571 729 6842

Trafico LAN Transmitido Sí Sí Sí Sí 7571 729 6842

División de datos

El conjunto de datos se dividió mediante muestreo aleatorio

estratificado por clase en una proporción de 75% para

entrenamiento y 25% para prueba, preservando la relación

entre clases. Se fijó una semilla aleatoria de 1 para garantizar

la reproducibilidad en todas las ejecuciones del algoritmo.

Evaluación del modelo

La estrategia de evaluación se diseñó para comparar, de forma

justa y reproducible, el desempeño predictivo de ambos

modelos: el modelo RandomForest (basado en características

estadísticas agregadas) y la CNN-1D (basada en secuencias

temporales crudas).

En el caso de la CNN-1D, el análisis del comportamiento

del modelo permitió identificar los patrones temporales

que contribuyen a la detección de fallos. Las primeras

capas convolucionales aprendieron fluctuaciones locales en

la latencia ICMP y en el tráfico LAN transmitido y recibido,

mientras que las capas más profundas integraron relaciones

de mayor alcance entre el jitter, la disponibilidad y los

reinicios detectados en el uptime.

Aunque los valores brutos permanecen confidenciales por

razones institucionales, se proporciona esta descripción

conceptual para garantizar transparencia sobre el proceso

de aprendizaje y las variables que más influyen en las

predicciones del modelo. Todas las curvas y métricas (ROC,

PR, F1–umbral y matrices de confusión) se generaron

directamente a partir de las probabilidades estimadas por los

modelos sobre el conjunto de prueba; para cada umbral entre

0 y 1 se calcularon sistemáticamente las métricas estándar de
Scikit-learn, lo que permite reproducir matemáticamente las

gráficas a partir de ytest y (Y = 1).

Selección de hiperparámetros

Para optimizar el modelo Random Forest se aplicó una

búsqueda exhaustiva mediante GridSearchCV evaluando

distintas combinaciones de hiperparámetros sobre el conjunto

de entrenamiento, mientras que el conjunto de prueba se

mantuvo independiente durante todo el proceso. El criterio

de selección fue la métrica F1-macro, debido a su capacidad

para equilibrar el desempeño en ambas clases en presencia

de desbalance. En resumen, se exploraron los siguientes

hiperparámetros:

• n_estimators: número de árboles en el bosque,

explorado en el rango de 10 a 100 en incrementos de

10.

• criterion: función de impureza utilizada para dividir
los nodos, evaluando las opciones "gini", .entropy"
y "log_loss".

• max_features: proporción de variables en cada

división, con valores de sqrt, log2 y None

Los demás hiperparámetros se mantuvieron en sus valores

por defecto al no evidenciar mejoras relevantes.

Selección de características

Se implementó selector de características secuencia (SFS)

en modo forward, con una tolerancia de 1 × 10−3 y

una validación cruzada estratificada (k = 5), utilizando

el algoritmo Random Forest como modelo base y la

métrica F1-macro como criterio de evaluación. El método

permitió identificar un subconjunto reducido de variables sin

degradar el rendimiento, destacando aquellas asociadas a la

variabilidad del tráfico LANy dispersión de paquetes unicast.

Entrenamiento profundo

La CNN-1D se implementó en PyTorch Lightning con un

máximo de 150 épocas, tamaño de lote de 64 y el optimizador

Adam (tasa de aprendizaje 1 × 10−5). La arquitectura

consta de dos capas convolucionales 1D con 64 y 128

filtros (tamaños de kernel 5 y 3, respectivamente), cada

una seguida de una activación ReLU y una operación de

max pooling tras la primera convolución. Posteriormente se
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aplica un módulo de adaptive average pooling que reduce

la dimensión temporal a un único valor por filtro y una

cabeza densa compuesta por una capa totalmente conectada

de 128 unidades con dropout (p = 0,2) y una capa lineal

de salida con dos neuronas. La representación esquemática

completa de esta arquitectura se muestra en la Figura 4.

Las probabilidades de clase se obtienen aplicando la función

softmax a los logits y, a partir de ellas, se realiza una búsqueda

de umbral en el conjunto de validación para maximizar la

métrica F1. El umbral óptimo así obtenido se mantiene fijo

para la evaluación final sobre el conjunto de prueba.

Figura 4: Arquitectura de la red neuronal convolucional 1D.

Visualización de resultados

Para facilitar la interpretación se generaron:

• Curvas ROC y PR en validación y prueba, con

marcadores del umbral seleccionado.

• Matriz de confusión en el conjunto de prueba.

• Importancias de características para Random Forest.

• Curvas de entrenamiento para la CNN para

evidenciar convergencia y descartar sobreajuste.

• Análisis de umbral: F1, precision y recall en función

del umbral en validación.

• Comparativa: Random Forest vs. CNN.

Fase rigor

La validación se realizó mediante validación cruzada

estratificada (k-fold) aplicada sobre el conjunto de

entrenamiento para optimizar los hiperparámetros y la

selección de características. Posteriormente, se evaluó el

desempeño final sobre un conjunto de prueba independiente.

El umbral de decisión se mantuvo constante respecto al

determinado en validación. Las métricas principales fueron

F1-score de la clase fallo y AUC-PR, complementadas con

accuracy, precision, recall y AUC-ROC para proporcionar

una visión integral del comportamiento del modelo.

Consideraciones éticas y replicabilidad

La recolección de indicadores de red se realizó con

autorización del área de Tecnologías de la Información

y Comunicación de la UPSE. El proceso se limitó a

información técnica de infraestructura (SNMP, ICMP,

paquetes transmitidos y uptime), sin incluir datos personales

ni contenidos de usuario. Por razones de seguridad

institucional, el conjunto de datos crudo y los scripts de

procesamiento no se publican. Sin embargo, se documentaron

íntegramente los procedimientos de preprocesamiento,

selección de características y validación. El estudio

mantiene trazabilidad completa y puede replicarse bajo

convenios autorizados en contextos similares, garantizando

la confidencialidad institucional.

3. Resultados

En esta sección se presentan los resultados obtenidos con

los algoritmos de aprendizaje automático aplicados a la

predicción de fallos en la red LAN de la UPSE. Los

modelos se entrenaron a partir de los indicadores históricos

capturadosmediante SNMPy se evaluaron según lasmétricas

definidas en la metodología. De acuerdo con la revisión

sistemática descrita en la Fundamentación Teórica, los

algoritmos Random Forest y CNN-1D fueron seleccionados

por su desempeño en escenarios similares reportados en la

literatura, su capacidad para manejar datos de telemetría

y su equilibrio entre interpretabilidad y generalización. En

coherencia con los procedimientos detallados en Materiales

y Métodos, se presentan primero los resultados del modelo

Random Forest y posteriormente los de la CNN-1D.

Modelo Random Forest

Para optimizar el modelo RandomForest se aplicó un proceso

conjunto de selección de hiperparámetros y selección de

características. En la primera etapa se exploraron distintas

combinaciones de criterion, max_features y número de

árboles. El mejor desempeño se obtuvo utilizando el

criterio entropy, la opción sqrt para la selección aleatoria

de características en cada nodo y 20 árboles, alcanzando

un F1-macro de 86,83%. Posteriormente se ejecutó un

proceso de selección secuencial de características (SFS)

con el fin de identificar un subconjunto más compacto de

variables relevantes. Este procedimiento seleccionó cuatro

características clave asociadas a la variabilidad y dispersión

del tráfico de red: ICMP_response_time_jitter_max,

Trafico_LAN_Transmitido_std, Trafico_LAN_Recibido_std

y Paquetes_unicast_recibidos_ETH_max.

En la Tabla 5 se compara el rendimiento obtenido en ambos

enfoques: el modelo optimizado mediante hiperparámetros

y el modelo reducido con las mejor características. En

general, ambos alcanzan un desempeño muy similar, con una

exactitud cercana al 97%. El modelo basado en selección

de características presenta una ligera mejora en precisión

(96,24% frente a 94,81%) y en las métricas F1 (81,27%)

y F2 (74,33%), evidenciando una mayor proporción de

predicciones positivas clasificadas correctamente. Por su

parte, el modelo completo optimizado por hiperparámetros

obtuvo valores superiores en ROC-AUC (94,21%) y

PR-AUC (84,11%), indicando una mejor capacidad

discriminativa en escenarios de desbalance de clases. Estos

resultados muestran que la reducción de características

no compromete el rendimiento general del modelo y, en

algunos casos, mejora su estabilidad sin afectar su capacidad

predictiva.
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Tabla 5: Desempeño del modelo Random Forest con los mejores Hiperparámetros vs Mejores Características

Métrica Hiperparámetros Características
Accuracy 96,78 % 96,88 %
Precision 94,81 % 96,24 %
Recall 70,33 % 70,33 %
Puntuación F1 80,76 % 81,27 %
Puntuación F2 74,16 % 74,33 %
ROC-AUC 94,21 % 91,69 %
PR-AUC 84,11 % 81,21 %

La Figura 5 muestra las matrices de confusión del modelo

Random Forest bajo dos configuraciones: (a) utilizando los

hiperparámetros optimizados y (b) empleando el conjunto

reducido de características seleccionadas. En ambos casos,

el modelo mantiene una proporción muy alta de verdaderos

negativos, superiores al 99,5%, lo que evidencia una tasa de

falsas alarmas prácticamente nula. En cuanto a la detección

de fallos, el desempeño es estable en ambas configuraciones:

el modelo identifica correctamente 128 de 182 fallos reales,

alcanzando un recall de 70,33%. Estas matrices confirman

que la reducción de características no afecta la capacidad

discriminativa del modelo y que conserva un equilibrio

adecuado entre precisión y sensibilidad al distinguir entre

condiciones normales y de fallo en la red LAN.

Figura 5:Matrices de confusión del modelo Random Forest: (a) mejores hiperparámetros y (b) mejores características.

La Figura 6 muestra las curvas ROC obtenidas para el

modelo Random Forest bajo los dos enfoques evaluados:

(a) utilizando los hiperparámetros optimizados y (b)

considerando únicamente las características seleccionadas.

En ambos casos, las curvas se aproximan al extremo superior

izquierdo, lo que evidencia una alta sensibilidad y una baja

tasa de falsos positivos. El área bajo la curva confirma

este comportamiento: el modelo optimizado alcanzó un

AUC de 94,21%, mientras que el modelo reducido obtuvo

un AUC de 91,69%. Estos valores indican que, aunque

la reducción de características disminuye ligeramente la

capacidad discriminativa, el desempeño global se mantiene

robusto y estable.

Figura 6: Curvas ROC del modelo Random Forest: (a) mejores hiperparámetros y (b) mejores características.
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La Figura 7 presenta las curvas Precision–Recall de los

modelos: (a) utilizando los hiperparámetros optimizados y

(b) empleando únicamente las características seleccionadas.

En ambos casos, las curvas mantienen valores elevados de

precisión en los niveles altos de sensibilidad, lo que evidencia

una baja proporción de falsos positivos incluso cuando se

incrementa el recall. El área bajo la curva confirma este

comportamiento: el modelo optimizado alcanzó un PR-AUC

de 84,11%, mientras que el modelo reducido obtuvo un

PR-AUC de 81,21%. Estos resultados indican que, aunque la

reducción de características produce una ligera disminución

en la capacidad para mantener precisión a medida que

aumenta el recall, el desempeño global permanece estable y

adecuado para escenarios con clases desbalanceadas.

Figura 7: Curvas Precision–Recall del modelo Random Forest: (a) mejores hiperparámetros y (b) mejores características.

La Figura 8 muestra la evolución de las métricas del

modelo Random Forest en función del umbral de decisión,

considerando los enfoques de (a) mejores hiperparámetros

y (b) mejores características. Las curvas corresponden a

las métricas de exactitud (azul), precisión (naranja), recall

(verde) y F1 (rojo), de acuerdo con la leyenda mostrada

en la figura. En ambos casos, la exactitud se mantiene

elevada y estable en la mayor parte del rango evaluado, con

valores cercanos al 95%. La precisión aumenta de manera

sostenida conforme se incrementa el umbral, superando el

90% en los niveles más altos. El recall, por el contrario, inicia

en valores elevados para umbrales bajos, pero disminuye

progresivamente hasta estabilizarse alrededor del 60%. La

puntuación F1 se mantiene cercana al 70%, mostrando un

comportamiento estable en la región óptima y descendiendo

conforme el incremento del umbral reduce el número de

instancias positivas correctamente identificadas. El umbral

óptimo determinado para maximizar la métrica F1 fue de

46% para el modelo con hiperparámetros optimizados y de

47% para el modelo basado en características seleccionadas.

En ambos casos, estos puntos reflejan un equilibrio adecuado

entre precisión y sensibilidad, especialmente relevante en un

escenario con clases desbalanceadas.

Figura 8:Métricas del modelo Random Forest en función del umbral: (a) mejores hiperparámetros y (b) mejores características.

La caída observada en la métrica F1 ante aumentos del

umbral se debe al desbalance del conjunto de datos con

aproximadamente el 9,6% de fallos. En escenarios de este

tipo, incluso incrementos pequeños del umbral reducen

rápidamente el recall, ya que menos instancias de la clase

positiva alcanzan probabilidades superiores al nuevo límite

de decisión. Dado que F1 depende del equilibrio entre

precisión y recall, su disminución provoca que la curva

descienda con rapidez, aun cuando la precisión aumente

ligeramente. Este comportamiento es consistente con la teoría

de clasificación en datasets desbalanceados y se reproduce

también en los experimentos posteriores.
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Modelo CNN-1D

Una vez analizado el desempeño del modelo Random Forest,

se evaluó el modelo basado en CNN-1D con el fin de

comparar su capacidad predictiva bajo la misma estructura

del problema. La Tabla 6 resume las métricas de desempeño

obtenidas por el modelo CNN-1D. El modelo alcanzó una

exactitud del 94,51%, evidenciando un alto nivel de aciertos

globales en la clasificación. La precisión fue del 68,31%,

lo que indica una proporción moderada de predicciones

positivas correctas. El modelo detectó adecuadamente fallos

reales, alcanzando un recall del 73,10%, mientras que la

puntuación F1 obtuvo 70,62%, reflejando un equilibrio

adecuado entre precisión y sensibilidad. La puntuación F2,

más sensible al recall, alcanzó 72,09%, mostrando un buen

desempeño en escenarios donde es prioritario reducir falsos

negativos. Finalmente, las métricas ROC-AUC (92,70%)

y PR-AUC (76,64%) confirmaron una buena capacidad

discriminativa incluso bajo condiciones de desbalance de

clases, aunque con valores inferiores a los obtenidos con

Random Forest.

Tabla 6: Desempeño del modelo CNN-1D

Métrica CNN-1D ( %)
Accuracy 94,51
Precision 68,31
Recall 73,10
Puntuación F1 70,62
Puntuación F2 72,09
ROC-AUC 92,70
PR-AUC 76,64

La Figura 9 muestra la matriz de confusión obtenida por

el modelo CNN-1D. El modelo clasificó correctamente el

96,81% de los estados normales (verdaderos negativos), con

una tasa de falsas alarmas del 3,19%. En la detección de

fallos, alcanzó un 71,35% de aciertos (verdaderos positivos),

mientras que el 28,65% de los casos de fallo no fueron

detectados. Estos resultados indican que la CNN-1D logró

una buena capacidad para distinguir entre condiciones

normales y de fallo, con una ligera tendencia a priorizar

la reducción de falsos positivos frente a la sensibilidad de

detección.

Figura 9:Matriz de confusión del modelo CNN-1D.
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La Figura 10 muestra la curva ROC correspondiente al

modelo CNN-1D. La curva se aproxima al extremo superior

izquierdo, indicando una alta sensibilidad y baja tasa de falsos

positivos. El área bajo la curva de 92,70% demuestra una

buena capacidad discriminativa del modelo para separar las

clases normales y de fallo. Estos resultados confirman que la

CNN-1D mantuvo un rendimiento competitivo, comparable

al obtenido con el modelo Random Forest, pese a utilizar una

arquitectura de mayor complejidad

Figura 10: Curva ROC del modelo CNN-1D.

En la Figura 11 se muestra el resultado de la curva

Precision–Recall del modelo CNN-1D, obteniendo 76.64%.

La curva indica alta precisión en los niveles iniciales de

sensibilidad, haciendo referencia a que el modelo mantiene

una baja tasa de falsos positivos en las predicciones más

confiables. El área bajo la curva indica un buen equilibrio

entre precisión y recall, demostrando que la red neuronal es

capaz de identificar fallos de manera efectiva, incluso ante la

presencia de desbalance en las clases.

Figura 11: Curva ROC del modelo CNN-1D.

La Figura 12 muestra la variación en las métricas del modelo

CNN-1D según el umbral de decisión. La exactitud se

mantuvo elevada y estable en todo el rango, con valores

cercanos al 95%. La precisión aumentó progresivamente

conforme se elevó el umbral, superando el 90% en los niveles

más altos. El recall mostró el comportamiento opuesto:

inició con valores altos en umbrales bajos y disminuyó

hasta estabilizarse cerca del 60%. La puntuación F1 alcanzó

su valor máximo alrededor del 46%, punto identificado

como umbral óptimo, donde el modelo logró un equilibrio

adecuado entre precisión y sensibilidad.
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Figura 12:Métricas del modelo CNN-1D en función del umbral.

Finalmente, de acuerdo con la comparación general

presentada en la Tabla 7, el modelo Random Forest evidenció

el mejor desempeño global entre los modelos evaluados. La

versión optimizada mediante hiperparámetros obtuvo una

exactitud superior al 96% y una precisión del 94,81%,

reflejando una alta capacidad para identificar correctamente

los estados normales y minimizar las falsas alarmas. La

variante con selección de características mantuvo métricas

muy similares, lo que confirma que la reducción del número

de variables no afectó de manera significativa su capacidad

predictiva, preservando su estabilidad y consistencia. Por otra

parte, la CNN-1D alcanzó el mayor recall (73,10%) entre los

modelos comparados, lo que indica una mayor sensibilidad

para detectar fallos reales, aunque con una precisión menor

(68,31%), lo que incrementa la probabilidad de falsos

positivos. En términos de capacidad discriminativa, todos

los modelos superaron el 90% en ROC-AUC, evidenciando

un rendimiento sólido incluso en condiciones de desbalance

de clases.

Tabla 7: Desempeño comparativo entre los modelos Random Forest y CNN-1D

Métrica RF Selección
Hiperparámetros

RF Selección de
características

CNN-1D

Accuracy 96,78 % 96,88 % 94,51 %

Precision 94,81 % 96,24 % 68,31 %

Recall 70,33 % 70,33 % 73,10 %

Puntuación F1 80,76 % 81,27 % 70,62 %

Puntuación F2 74,16 % 74,33 % 72,09 %

ROC-AUC 94,21 % 91,69 % 92,70 %

PR-AUC 84,11 % 81,21 % 76,64 %

En conjunto, los resultados sugieren que Random Forest es

el modelo más estable, consistente y explicable, adecuado

para su despliegue en entornos operativos de monitoreo. No

obstante, la CNN-1D constituye una alternativa más sensible

ante eventos de fallo, lo que la convierte en un enfoque

complementario para escenarios en los que la prioridad es

maximizar la detección temprana de incidencias en redes

LAN.

4. Discusión

En el escenario experimental, un fallo en la red LAN

se definió como la presencia de condiciones anómalas

detectadas en los puntos de acceso, tales como pérdida

de conectividad ICMP, incrementos abruptos de tiempo de

respuesta, picos de jitter, congestión repentina del tráfico

LAN, caída temporal del servicio o ausencia de paquetes

unicast. Estos eventos representan las incidencias reales que

afectan la continuidad del servicio en la red LAN de la UPSE

y constituyen la base sobre la cual los modelos aprendieron

patrones para anticipar estados de fallo.

Los resultados demostraron que ambos modelos, Random

Forest y la CNN-1D, alcanzaron un desempeño sólido en la

predicción de fallos en la red LAN de la UPSE. El modelo

Random Forest registró una exactitud superior al 96% y un

equilibrio adecuado entre precisión, aproximadamente 94%

y un recall cercano a 70%. Esto evidencia su capacidad para

detectar incidentes sin incrementar las falsas alarmas. De

manera similar, la CNN-1D logró una exactitud del 94% y

un recall ligeramente mayor con 73,10%, lo que confirma su

habilidad para reconocer secuencias anómalas en indicadores

temporales.
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La diferencia entre ambos modelos se debió en gran medida

al fuerte desbalance de clases en el conjunto de datos

(729 fallos frente a 6 842 normales). Este desequilibrio

influyó directamente en el rendimiento de ambos algoritmos.

El algoritmo Random Forest tendió a favorecer la clase

mayoritaria y logró una alta precisión, pero menor recall.

La CNN-1D mostró una mayor sensibilidad hacia la clase

minoritaria y detectó más fallos a costa de un aumento de

falsos positivos. Esta relación inversa entre precisión y recall

destaca la complementariedad de ambos modelos y justifica

el uso de una estrategia híbrida, en la que el algoritmo

Random Forest actúa como un filtro de alta confianza

y el algoritmo CNN-1D como un detector sensible. Tal

combinación permitiría mitigar los efectos del desbalance y

mejorar la detección temprana de fallos en entornos reales de

red.

Estos hallazgos coinciden parcialmente con lo reportado por

Myrzatay et al. [19] [19 p. 9] quienes integraron técnicas

de suavizado exponencial con algoritmos supervisados para

predecir fallos en switches LAN. Aunque sus resultados

mostraron un desempeño aceptable, con precision de 81,2%

y recall de 61,9%, el presente estudio superó dichas métricas

al alcanzar valores de F1 de 80% y recall de 70% en la

red de la UPSE. Esta mejora se debe al uso de indicadores

SNMP más representativos y a un marco de validación más

riguroso, que permitió a los modelos capturar patrones más

consistentes relacionados con las condiciones de error.

En términos comparativos, Random Forest demostró una

estabilidad y generalización comparativamente mayores,

mientras que la CNN-1D destacó por su capacidad de

adaptación a patrones temporales complejos. Estos resultados

concuerdan con los hallazgos de Murphy et al. [42], quienes

reportaron un mejor rendimiento de los modelos basados

en árboles bajo restricciones de datos en comparación con

las redes profundas con mayor sensibilidad a las series

temporales. En general, los resultados demuestran que

ambos modelos son complementarios y útiles en escenarios

operativos con diferente granularidad temporal.

La selección secuencial de características (SFS) confirmó

que el subconjunto reducido de variables —ICMP response

time jitter max, Trafico LAN Transmitido std, Trafico LAN

Recibido std y Paquetes unicast recibidos ETH max—

conservó un rendimiento equivalente al modelo completo,

alcanzando un F1 de 81% y un AUC-ROC de 91,69%.

Esto coincide con Edozie et al. [43] quienes resaltan la

relevancia de las métricas de variabilidad y dispersión en

la predicción de anomalías. La reducción de variables sin

pérdida de rendimiento refuerza la eficiencia del enfoque

propuesto y su aplicabilidad en entornos con recursos de

monitoreo limitados.

Los valores obtenidos de ROC- AUC (94% en Random

Forest y 92% en CNN-1D) y de PR-AUC (84% en

Random Forest y 77% en CNN-1D). Estos resultados

confirmaron que los indicadores SNMP, procesados y

normalizados adecuadamente, pueden servir como base

fiable para la predicción de fallos en redes universitarias.

Además, destacaron la viabilidad de aplicar algoritmos

supervisados como parte de un sistema de gestión proactiva

en infraestructuras reales.

Las limitaciones del estudio incluyeron el desbalance

de clases, el uso de una única topología (38 puntos

de acceso Ruckus) y el tamaño limitado del conjunto

de datos. Sin embargo, el diseño experimental —con

validación cruzada estratificada y calibración de umbral

en validación— minimizó el riesgo de sobreajuste y

garantizó la reproducibilidad de los resultados. En trabajos

futuros se podría explorar técnicas de balanceo sintético

(SMOTE), arquitecturas híbridas basadas en Transformers

y evaluaciones en redes heterogéneas para ampliar la

generalización del modelo.

A diferencia de los estudios previos centrados en redes

corporativas o infraestructuras controladas, el escenario

universitario analizado presenta una dinámica temporal

más compleja, con variaciones horarias pronunciadas,

alta movilidad de usuarios y tráfico heterogéneo asociado

a dispositivos personales, laboratorios académicos y

actividades de docencia. Este comportamiento explica las

diferencias observadas respecto a trabajos como Myrzatay

et al [19]. y Murphy et al. [42], donde las redes analizadas

exhibían menor variabilidad y condiciones operativas más

estables. En este contexto, la mayor sensibilidad de la

CNN-1D a patrones transitorios y la mayor estabilidad

del modelo Random Forest ante ruido estadístico reflejan

características propias de la telemetría SNMP en campus

universitarios. Por tanto, los resultados no se limitan

a replicar tendencias de la literatura, sino que aportan

evidencia específica sobre cómo estos algoritmos responden

ante patrones reales de uso académico, fortaleciendo su

aplicabilidad en entornos educativos.

En resumen, la evidencia empírica confirmó que la predicción

de fallos mediante aprendizaje supervisado es una estrategia

viable y eficaz para las redes LAN universitarias. La

combinación de modelos explicables y redes profundas

representa un avance tangible hacia la automatización del

monitoreo y la optimización operativa de la infraestructura

de red de la UPSE.

5. Conclusiones

El estudio confirmó que los indicadores obtenidos mediante

SNMP —latencia ICMP, tráfico LAN y paquetes unicast—

contienen información suficiente para anticipar eventos de

fallo en la red universitaria, entendidos operacionalmente

como pérdida de respuesta ICMP, reinicios inesperados

(cambios en el uptime) o degradación sostenida del

rendimiento. Estos eventos permitieron construir un conjunto

de datos supervisado adecuado para la predicción en entornos

reales.

Los modelos Random Forest y CNN-1D demostraron

fortalezas complementarias: Random Forest destaca por

su alta precisión y baja generación de falsas alarmas,

mientras que la CNN-1D exhibe mayor sensibilidad ante

patrones anómalos en secuencias temporales, detectando un

número superior de fallos reales. Esta dualidad respalda la

adopción de un esquema híbrido, en el que la CNN-1D

opere como detector temprano y Random Forest como

mecanismo de verificación. De manera operativa, se

recomienda mantener los umbrales calibrados mediante

validación interna, priorizando aquellos que maximizan la

métrica F1 en escenarios con clases desbalanceadas.

La principal limitación del estudio fue el desbalance natural

del dataset, típico de redes estables donde los fallos son

poco frecuentes. Para investigaciones futuras, se sugiere

explorar métodos de balanceo como SMOTE o modelos
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generativos únicamente para ampliar la representación de

la clase minoritaria, sin sustituir a los modelos predictivos

principales. También será pertinente validar el modelo

en otras topologías académicas y considerar arquitecturas

modernas de series temporales, como Transformers.

En conjunto, los resultados evidencian que la combinación

de modelos explicables y redes profundas es una

estrategia eficaz para fortalecer la gestión predictiva de

la infraestructura de red de la UPSE. Este enfoque sienta

las bases para una transición sostenible hacia sistemas de

monitoreo proactivo impulsados por inteligencia artificial en

entornos universitarios.
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