Detection of maximum greenness in maize (Zea mays) using MODIS time series data

Authors

DOI:

https://doi.org/10.26423/2qzfg896

Keywords:

mean year, NDVI, remote sensing, vegetation dynamics

Abstract

The aim of this research was to detect the moment of maximum greenness of maize in the parish of Colonche, Ecuador, using time series of the Normalized Difference Vegetation Index obtained from the MODIS sensor. Images from the MOD09A1 product corresponding to the period 2001–2023 were processed, applying the Savitzky–Golay filter to reduce noise and preserve the phenological structure. Subsequently, the series were analyzed using the autocorrelation function, the Ljung–Box Q test, and the periodogram, determining the mean year using Buys–Ballot tables. The results showed a well-defined seasonal pattern, with a peak of greenness between March and April, corresponding to the maximum vegetative vigor of the crop (0,64). The method allowed for the accurate identification of the phenological phases of maize, demonstrating the usefulness of NDVI and MODIS data for regional agricultural monitoring.

Downloads

Download data is not yet available.

Author Biographies

  • César Sáenz Flores, Universidad Agraria del Ecuador (UAE), Avenida 25 de Julio, Guayaquil 090104, Guayas, Ecuador

    Docente investigador Universidad Agraria del Ecuador (UAE),  Guayaquil - Ecuador

  • Julio César Villacrés, Universidad Agraria del Ecuador (UAE), Avenida 25 de Julio, Guayaquil 090104, Guayas, Ecuador

    Docente investigador Universidad Agraria del Ecuador (UAE),  Guayaquil - Ecuador

References

1. Espinoza, Í. F., Barrera, A. E., Sánchez, A. R., Medina, M. L., & García, A. R. (2023). Elaboración de ensilaje de maíz forrajero (Zea mays) y residuos de banano verde (Musa paradisiaca) para ovinos tropicales. Ciencia Latina Revista Científica Multidisciplinar, 7(5), 2817–2828. https://doi.org/10.37811/cl_rcm.v7i5.7921 DOI: https://doi.org/10.37811/cl_rcm.v7i5.7921

2. Paredes, M., & Díaz, M. (2023). Sustitución del pienso de finalización por maíz amarillo en pollos criollos. Revista de Investigaciones Veterinarias del Perú, 34(1), e24612. https://doi.org/10.15381/rivep.v34i1.24612 DOI: https://doi.org/10.15381/rivep.v34i1.24612

3. Arizala, J., Nemocón-Cobos, A. M., Posada-Ochoa, S. L., & Mahecha-Ledesma, L. (2022). Producción, calidad de leche y análisis económico de vacas Holstein suplementadas con ensilaje de botón de oro (Tithonia diversifolia) o ensilaje de maíz. Biotecnología en el Sector Agropecuario y Agroindustrial, 20(1), 27–40. https://doi.org/10.18684/rbsaa.v20.n1.2022.1535 DOI: https://doi.org/10.18684/rbsaa.v20.n1.2022.1535

4. García, D. C., Soto, J. C., Lozano, N. A., Yucailla, V. A., Tobar, A. C., & Orozco, R. L. (2025). Evaluación productiva de cabritos criollos (Capra hircus) con suplementación de alimento balanceado y forraje verde hidropónico de maíz y el efecto sobre los parámetros orgonométricos. Archivos de Zootecnia, 74(286), 107–114. https://dialnet.unirioja.es/servlet/articulo?codigo=10222961 DOI: https://doi.org/10.21071/az.v74i286.6009

5. Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150. https://doi.org/10.1016/0034-4257(79)90013-0 DOI: https://doi.org/10.1016/0034-4257(79)90013-0

6. Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36(8), 1627–1639. https://doi.org/10.1021/ac60214a047 DOI: https://doi.org/10.1021/ac60214a047

7. Wang, C., Cui, A., Ji, R., Huang, S., Li, P., Chen, N., & Shao, Z. (2025). Spatiotemporal responses of global vegetation growth to terrestrial water storage. Remote Sensing, 17(10), 1701. https://doi.org/10.3390/rs17101701 DOI: https://doi.org/10.3390/rs17101701

8. Ljung, G. M., & Box, G. E. P. (1978). On a measure of lack of fit in time series models. Biometrika, 65(2), 297–303. https://doi.org/10.1093/biomet/65.2.297 DOI: https://doi.org/10.1093/biomet/65.2.297

9. Buys-Ballot, C. H. D. (1847). Les changements périodiques de température, dépendants de la nature du soleil et de la lune, mis en rapport avec le pronostic du temps, déduits d’observations néerlandaises de 1729 à 1846. Kemink. https://play.google.com/store/books/details?id=DIs_AAAAcAAJ

10. Santana, C. T. C., Sanches, I. D., Caldas, M. M., & Adami, M. (2024). A Method for Estimating Soybean Sowing, Beginning Seed, and Harvesting Dates in Brazil Using NDVI-MODIS Data. Remote Sensing, 16(14), 2520. https://doi.org/10.3390/rs16142520 DOI: https://doi.org/10.3390/rs16142520

11. Instituto Nacional de Meteorología e Hidrología. (2017). Anuario meteorológico 2013. INAMHI. Fecha de acceso: 15 de mayo de 2025). https://servicios.inamhi.gob.ec/anuarios-metereologicos/

12. Ministerio de Agricultura y Ganadería. (2025). Catálogo de datos abiertos. MAG. (Fecha de acceso: 10 de mayo de 2025). https://www.datosabiertos.gob.ec/dataset/?q=MAIZ

13. Vermote, E. (2021). MODIS/Terra Surface Reflectance 8-Day L3 Global 500m SIN Grid V061 [Base de datos]. NASA Land Processes Distributed Active Archive Center. (Fecha de acceso: 20 de mayo de 2025). https://doi.org/10.5067/MODIS/MOD09A1.061

14. Bouskour, S., Zaggaf, M. H., Bahatti, L., & Zayrit, S. (2024). MODIS-NDVI and wheat yield patterns and predictions in Taounate, Morocco. Indonesian Journal of Electrical Engineering and Computer Science, 37(1), 648–659*. http://doi.org/10.11591/ijeecs.v37.i1.pp648-659 DOI: https://doi.org/10.11591/ijeecs.v37.i1.pp648-659

15. Patil, P. P., Jagtap, M. P., Khatri, N., Madan, H., Vadduri, A. A., & Patodia, T. (2024). Exploration and advancement of NDDI leveraging NDVI and NDWI in Indian semi-arid regions: A remote-sensing-based study. Case Studies in Chemical and Environmental Engineering, 9, 100573. https://doi.org/10.1016/j.cscee.2023.100573 DOI: https://doi.org/10.1016/j.cscee.2023.100573

16. Zhang, T. T., Qi, J. G., Gao, Y., Ouyang, Z. T., Zeng, S. L., & Zhao, B. (2015). Detecting soil salinity with MODIS time series VI data. Ecological Indicators, 52, 480–489. https://doi.org/10.1016/j.ecolind.2015.01.004 DOI: https://doi.org/10.1016/j.ecolind.2015.01.004

17. Cai, Y., Lin, H., & Zhang, M. (2019). Mapping paddy rice by the object-based random forest method using time series Sentinel-1/Sentinel-2 data. Advances in Space Research, 64(11), 2233–2244. https://doi.org/10.1016/j.asr.2019.08.042 DOI: https://doi.org/10.1016/j.asr.2019.08.042

18. Cao, R., Chen, Y., Shen, M., Chen, J., Zhou, J., Wang, C., & Yang, W. (2018). A simple method to improve the quality of NDVI time-series data by integrating spatiotemporal information with the Savitzky-Golay filter. Remote Sensing of Environment, 217, 244–257. https://doi.org/10.1016/j.rse.2018.08.022 DOI: https://doi.org/10.1016/j.rse.2018.08.022

19. Hamilton, J. D. (1994). Time series analysis. Princeton University Press. https://api.pageplace.de/preview/DT0400.9780691218632_A40156688/preview-9780691218632_A40156688.pdf DOI: https://doi.org/10.1515/9780691218632

20. Jeba, R. P., Kirthiga, S. M., Issac, A. M., Bindhu, V. M., Srinivasan, R., & Narasimhan, B. (2024). An improved framework for mapping and assessment of dynamics in cropping pattern and crop calendar from NDVI time series across a heterogeneous agro-climatic region. Environmental Monitoring and Assessment, 196(11), 1141. https://link.springer.com/article/10.1007/s10661-024-13270-1 DOI: https://doi.org/10.1007/s10661-024-13270-1

21. Dastigerdi, M., Nadi, M., Sarjaz, M. R., & Kiapasha, K. (2024). Trend analysis of MODIS NDVI time series and its relationship to temperature and precipitation in Northeastern of Iran. Environmental Monitoring and Assessment, 196(4), 346. https://link.springer.com/article/10.1007/s10661-024-12463-y DOI: https://doi.org/10.1007/s10661-024-12463-y

22. Jabal, Z. K., Khayyum, T. S., & Alwan, I. A. (2022). Impact of climate change on crop productivity using MODIS-NDVI time series. Civil Engineering Journal, 8(6), 1136–1156. https://doi.org/10.28991/CEJ-2022-08-06-04 DOI: https://doi.org/10.28991/CEJ-2022-08-06-04

23. Sáenz, C., Cicuéndez, V., Recuero, L., Wiese, K., Palacios-Orueta, A., & Litago, J. (2023). Analysis and Modeling of Rainfed Crops Dynamics Based on NDVI Time Series in Central Spain. IntechOpen. https://www.intechopen.com/chapters/1155570 DOI: https://doi.org/10.5772/intechopen.1002538

24. Yuan, Z., Bao, G., Dorjsuren, A., Oyont, A., Chen, J., Li, F., Dong, G., Guo, E., Shao, C., & Du, L. (2024). Climatic constraints of spring phenology on the Mongolian Plateau (1982–2021). Journal of Geophysical Research: Biogeosciences, 129(2), e2023JG007689. https://doi.org/10.1029/2023JG007689 DOI: https://doi.org/10.1029/2023JG007689

25. Sáenz, C., Cicuéndez, V., García, G., Madruga, D., Recuero, L., Bermejo-Saiz, A., Litago, J., de la Calle, I., & Palacios-Orueta, A. (2024). New Insights on the Information Content of the Normalized Difference Vegetation Index Sentinel-2 Time Series for Assessing Vegetation Dynamics. Remote Sensing, 16(16), 2980. https://doi.org/10.3390/rs16162980 DOI: https://doi.org/10.3390/rs16162980

Published

2025-12-26

Issue

Section

Original Articles

How to Cite

Detection of maximum greenness in maize (Zea mays) using MODIS time series data. (2025). UPSE Scientific and Technological Magazine, 12(2), 70-79. https://doi.org/10.26423/2qzfg896