Speed control of a car using Fuzzy Systems

Authors

  • Edwin Mejía Peñafiel Facultad de Informática y Electrónica, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador.
  • Alberto Leopoldo Arellano Aucancela Escuela Superior Politécnica del Chimborazo, Ecuador
  • Geovanny Vallejo Escuela Superior Politécnica del Chimborazo, Ecuador

DOI:

https://doi.org/10.26423/rctu.v4i2.270

Keywords:

Artificial Intelligence, Fuzzy Systems, Fuzzy Logic, Inference Mandani, Inference Rules, Fuzzy Algorithm

Abstract

In recent years artificial intelligence has been increasing its level in terms of research, diffuse systems have been consolidated as a useful tool for modeling complex and non-linear systems. Artificial intelligence techniques have become a fundamental tool for addressing complex problems including the automatic control area. Unlike traditional logic that uses only two values ​​of true or false, fuzzy logic allows defining intermediate values ​​in an attempt to apply a mode of thinking similar to that of the human being. In this situation, the expert systems have much to do with what it means to infer knowledge, using the famous rules of inference or also known as rules of production, within the fuzzy logic will be used the method of inference of Mandani that makes use of the rules If X Then Y, if premise then conclusion. In this article we have developed a diffuse algorithm to control the speed of a car and prevent the same shock when the driver suffers any alteration of his body, the prototype collects information from its environment for decision making, a model is presented as Prototype to follow in this case for the construction, is made an analysis of the different devices and the concepts are presented.

Downloads

Download data is not yet available.

References

Piedrafita R (2000) Ingeniería de la Automatización, Alfaomega.

Espín R(2004) El Paradigma de la Lógica Difusa: Oportunidades para la Ciencia, Instituto Superior Politecnico Jose Antonio Echeverría, Haban -Cuba.

Verdegay J.L. (2005). Una revisión de las metodologías que integran la Soft computing. Actas del Simposio sobre Lógica Fuzzy y Soft Computing LFSC 2005 (EUSFLAT).151-156.

Zadeh L. A. (1965). Fuzzy Sets, Information and Control, 8, 338-353.

Dubois D. and Prade H. (1980). Fuzzy Sets and Systems: Theory and Applications. Academic Press Inc, N. York.

Lindley D. (1994). En: Wright G., and P. Ayton (eds.) Subjective Probability, Wiley & Sons, Chichester.

Cassel-Gintz M. A., Liidike M. K. B., Petschel-Held, G., Reuswig F., Pliich, M. and Lamme, G (2003) "Fuzzy logic based global assessment of the marginality of agricultural land use", Climate Research, (8): 135-150.

Zadeh L. A.(1978) "Fuzzy sets as a basis for a theory of possibility", Fuzzy Sets and Systems, (1): 3-28.

YoshinariY and Pedrycz W.K. H.(1993)"Construction of fuzzy models through clustering techniques", Fuzzy Sets and Systems, (54): 157-165.

Zimmermann, H. J.(1985) Fuzzy sets and its applications, Publications Kluwer Nijhoff, Dordrecht, Southern Holland.

Kaufmann, A. and Gil Aluja, J(1993) Introducción de la teoría de los subconjuntos borrosos a la gestión de las empresas, Editorial Milladoiro, España.

Downloads

Published

2017-07-03

Issue

Section

Original Articles

How to Cite

Speed control of a car using Fuzzy Systems. (2017). UPSE Scientific and Technological Magazine, 4(2), 31-36. https://doi.org/10.26423/rctu.v4i2.270