Deep Learning Applied to the Classification of Cocoa Beans (Theobroma cacao L.) According to Fermentation Quality
DOI:
https://doi.org/10.26423/rctu.v11i2.838Keywords:
Convolutional Neural Network, Deep Learning, Classification, Cocoa Fermentation, Cocoa BeansAbstract
The Theobroma cacao L. bean fermentation is an important post-harvest process for the development of its properties and aroma. Although cocoa fermentation is complex, farmers use empirical methods to determine its degree of fermentation. One of the traditional techniques used to recognize the quality of fermentation is the “Cut Test”, performed by a person manually. However, this type of techniques could have a computer-based alternative. Therefore, in this study, the use of convolutional neural networks (CNN) based on deep learning was analyzed to determine the degree of fermentation of cocoa beans. For this purpose, a model was developed whose performance was verified in terms of precision and confusion matrix. This model achieved a positive accuracy of 82 % and a confusion matrix with favorable numbers on the diagonal elements. These results show that CNN is a viable option for the classification of cocoa beans based on their fermentation.
Downloads
Downloads
Published
Issue
Section
License
El titular de los derechos de autor de la obra, otorga derechos de uso a los lectores mediante la licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional. Esto permite el acceso gratuito inmediato a la obra y permite a cualquier usuario leer, descargar, copiar, distribuir, imprimir, buscar o vincular a los textos completos de los artículos, rastrearlos para su indexación, pasarlos como datos al software o usarlos para cualquier otro propósito legal.
Cuando la obra es aprobada y aceptada para su publicación, los autores conservan los derechos de autor sin restricciones, cediendo únicamente los derechos de reproducción, distribución para su explotación en formato de papel, así como en cualquier otro soporte magnético, óptico y digital.