Molecular Biology teaching strategy for In Silicogeneediting: A disruptive experience

Authors

DOI:

https://doi.org/10.26423/rcpi.v11i1.684

Keywords:

DNA, project-based learning, biotechnology, higher education

Abstract

In silico techniques are used to simulate experiments using molecular biology computational tools. This study aimed to promote the use of in silico assays in students of biotechnology engineering at the Universidad Regional Amazónica Ikiam. The methodology consisted of three phases: a) planning and organization, b) practice and execution, and c) project evaluation. In this sense, each group used bibliographic sources indexed in Scopus, Springer, and PubMed; databases such as Bioweb and Genbank; genome banks AddGene, EMBL, and NCBI; to assemble a new plasmid in Benchling. The main result was six projects that sought alternatives to current health, environmental, and agricultural challenges. Among the projects linked to health, there were two projects, G-1 and G-2, while the projects focused on the environmental component, G-4 and G-5, and those related to agricultural improvement, G-3, and G-6. According to the survey conducted at the end of the semester, the classroom projects were highly accepted. It is suggested that these strategies be utilized when studying topics associated with the biological sciences.

Downloads

Download data is not yet available.

Author Biographies

  • Jessica Jacqueline Verdezoto Prado, Universidad Regional Amazónica Ikiam | Tena - Ecuador | CP 150150

    Estudiante de pregrado de Ingeniería en Biotecnología, por la Universidad Regional Amazónica Ikiam 

  • Cristhian David Chicaiza Ortiz, China-UK Low Carbon College, Shanghai Jiao Tong University | Shanghai – China | CP 201306

    Master's Degree in Environmental Engineering, por la Universidad de Tianjin - China

  • Vanessa Pamela Navarrete Villa, Tianjin University, Environmental Science and Engineering | Tianjin - China | CP 300072.

    Ingeniera en Biotecnología Ambiental, ESPOCH 

     

References

Alonso-Fernández, Cristina; Calvo-Morata, Antonio; Freire, Manuel; Martínez-Ortiz, Iván; y Fernández-Manjón, Baltasar (2019). Applications of data science to game learning analytics data: A systematic literature review. Computers & Education, 141(2019), 103612. https://doi.org/10.1016/j.compedu.2019.103612

Antunes, Luisa (6 junio 2022). Genome Editing in Humans: A survey of law, regulation and governance principles. By Scientific Foresight (STOA). EPRS | European Parliamentary Research Service. Disponible en: https://epthinktank.eu/2022/06/06/genome-editing-in-humans-a-survey-of-law-regulation-and-governance-principles/

Aukema, Kelly G.; Escalante, Diego E.; Maltby, Meghan M.; Bera, Asim K.; Aksan, Alptekin; y Wackett, Lawrence P. (2017). In Silico Identification of Bioremediation Potential: Carbamazepine and Other Recalcitrant Personal Care Products. Environmental Science & Technology, 51(2), 880-888. https://doi.org/10.1021/acs.est.6b04345

Bhat, Gh Rasool; Sethi, Itty; Rah, Bilal; Kumar, Rakesh; y Afroze, Dil (2022). Innovative in Silico Approaches for Characterization of Genes and Proteins. Frontiers in Genetics, 13(2022), 1-20. https://doi.org/10.3389/fgene.2022.865182

Capa Gaona Jhoana; Ordoñez Mendoza Rubí; Chicaiza Cristhian Ortiz; Loján María del Cisne; Alvarado Ávila Ginno; y Romero Paguay José. (2022). Enseñanza de Química, Bioquímica y Biotecnología en tiempos de pandemia: herramientas y experiencias. Zenodo. https://doi.org/10.5281/zenodo.6582193

Capecchi, Mario R. (1989). Altering the Genome by Homologous Recombination. Science, 244(4910), 1288-1292. https://doi.org/10.1126/science.2660260

Carbonell, Pablo; Le Feuvre, Rosalind; Takano, Eriko; y Scrutton, Nigel S. (2020). In silico design and automated learning to boost next-generation smart biomanufacturing. Synthetic Biology (Oxford, England), 5(1), ysaa020. https://doi.org/10.1093/synbio/ysaa020

Chicaiza-Ortiz, Cristhian D.; Rivadeneira-Arias, Virginia del C.; Herrera-Feijoo, Robinson J.; y Andrade, Jean Carlo (2023). Biotecnología Ambiental, Aplicaciones y Tendencias. Editorial Grupo AEA. Disponible en: https://doi.org/10.55813/egaea.l.2022.25

Clement, Kendell; Hsu, J. Yonathan; Canver, Matthew C.; Joung, J. Keith; y Pinello, Luca (2020). Technologies and Computational Analysis Strategies for CRISPR Applications. Molecular Cell, 79, 11-29. https://doi.org/https://doi.org/10.1016/j.molcel.2020.06.012

Coronas-Serna, Julia M.; Del Val, Elba; Kagan, Jonathan C.; Molina, María; y Cid, Victor J. (2021). Heterologous Expression and Assembly of Human TLR Signaling Components in Saccharomyces cerevisiae. Biomolecules, 11(11), 1737. Disponible en: https://doi.org/10.3390/biom11111737

Correa, B., Rios, L., Volpi e Silva, N., Prado, G. S., & Lopes, J. H. (2021). Technology in Plant Genome Editing. Embrapa.

Cortes-Hernandez, Paulina; y Domínguez-Ramírez, Lenin (2019). In Silico Mutagenesis, Docking, and Molecular Dynamics: Their Role in Biosensor Design for Environmental Analysis and Monitoring BT - Ecopharmacovigilance: Multidisciplinary Approaches to Environmental Safety of Medicines (L. M. Gómez-Oliván (ed.); pp. 221-234). Springer International Publishing. https://doi.org/10.1007/698_2017_144

El-Bassyouni, H.; y Mohammed, M. (2018). Genome Editing: A Review of Literature. LAP LAMBERT Academic Publishing.

Estrellado, R. A., Freer; E. A., Motsipak, J.; Rosenberg, J. M.; y Velásquez, I. C. (2020). Data science in education using R. London, England: Routledge. Nb. All authors contributed equally.

Furtado, Rafael Nogueira (2019). Gene editing: the risks and benefits of modifying human DNA. Rev. Bioét., 27(2), 223-233. https://doi.org/10.1590/1983-80422019272304

García-Carpintero, E. (2017). El portafolio como metodología de enseñanza-aprendizaje y evaluación en el practicum: percepciones de los estudiantes. REDU. Revista de Docencia Universitaria, 15(1), 241-257. Disponible en: https://doi.org/10.4995/redu.2017.6043

Garcillán-Barcia, M. Pilar; Pluta, Radoslaw; Lorenzo-Díaz, Fabián; Bravo, Alicia; y Espinosa, Manuel (2022). The Facts and Family Secrets of Plasmids That Replicate via the Rolling-Circle Mechanism. Microbiology and molecular biology reviews: MMBR, 86(1), e0022220. https://doi.org/10.1128/MMBR.00222-20

Karre, Ashok (2020). Gene editing technology, Information Technology. Disponible en: https://www.researchgate.net/profile/Ashok-Karre/publication/347442835_GENE_EDITING_TECHNOLOGY/links/5fdc3550299bf140881b5828/GENE-EDITING-TECHNOLOGY.pdf

Khalil, Ahmad M. (2020). The genome editing revolution: review. Journal of Genetic Engineering and Biotechnology, 68(2020), 68. https://doi.org/10.1186/s43141-020-00078-y

Khan, Sikandar Hayat (2019). Genome-Editing Technologies: Concept, Pros, and Cons of Various Genome-Editing Techniques and Bioethical Concerns for Clinical Application. Molecular Therapy - Nucleic Acids, 16(June), 326-334. Disponible en: https://doi.org/10.1016/j.omtn.2019.02.027

Khurshed, Mohammed; Molenaar, Remco J.; y Van Noorden, Cornelis JF (2019). A simple in silico approach to generate gene-expression profiles from subsets of cancer genomics data. BioTechniques, 67(4), 172-176. https://doi.org/10.2144/btn-2018-0179

Labun, Kornel (2020). In silico design and analysis of targeted genome editing with CRISPR [Tesis PhD]. University of Bergen, Noruega. Disponible en: https://bora.uib.no/bora-xmlui/handle/1956/21443

Moradi, Mohammad; Golmohammadi, Reza; Najafi, Ali; Moosazadeh Moghaddam, Mehrdad; Fasihi-Ramandi, Mahdi; y Mirnejad, Reza (2022). A contemporary review on the important role of in silico approaches for managing different aspects of COVID-19 crisis. Informatics in medicine unlocked, 28(100862), 2352-9148. Disponible en: https://doi.org/https://doi.org/10.1016/j.imu.2022.100862

Murray, David; Doran, Peter; MacMathuna, Padraic; y Moss, Alan C. (2007). In silico gene expression analysis – an overview. Molecular Cancer, 50(2007), 6-50. Disponible en: https://doi.org/10.1186/1476-4598-6-50

Pradhan, Chandan Kumar; Nayak, Suraja, Kumar; y Baliyarsingh, Bighneswar (2022). In Silico Tools and Approach of CRISPR Application in Agriculture. Advances in Agricultural and Industrial Microbiology, 2(2022), 177-189. https://doi.org/10.1007/978-981-16-9682-4_10

Pratami, Mentari Putri; Fendiyanto, Miftahul Huda; Satrio, Rizky Dwi; Nikmah, Isna Arofatun; Awwanah, Mo; Farah, Nadya; Permata Sari, Nastiti Intan; y Nurhadiyanta (2022). In-silico Genome Editing Identification and Functional Protein Change of Chlamydomonas reinhardtii Acetyl-CoA Carboxylase (CrACCase). Jordan Journal of Biological Sciences, 15(3), 431 – 440. Disponible en: https://doi.org/https://doi.org/10.54319/jjbs/150312

Rahnama, Hassan; Nikmard, Mahdi; Abolhasani, Mohsen; Osfoori, Rahim, Sanjarian, Forough; y Habashi, Ali Akbar (2017). Immune analysis of cry1Ab-genetically modified potato by in-silico analysis and animal model. Food Science and Biotechnology, 26(5), 1437-1445. Disponible en: https://doi.org/10.1007/s10068-017-0181-4

Sandoval Rodríguez, Ana S.; Mena Enríquez, Mayra; y Márquez Aguirre, Aana L. (2013). Capítulo13: Vectores de clonación y expresión. En A. M. Salazar Montes, A. S. Sandoval Rodríguez, & J. S. Armendáriz Borunda (Eds.), Biología molecular. Fundamentos y aplicaciones en las ciencias de la salud. McGraw-Hill Education. Disponible en: http://accessmedicina.mhmedical.com/content.aspx?aid=1118679813

Silva, E. A. J., Estevam, E. B. B., Silva, T. S., Nicolella, H. D., Furtado, R. A., Alves, C. C. F., Souchie, E. L., Martins, C. H. G., Tavares, D. C., Barbosa, L. C. A., y Miranda, M. L. D. (2019). Antibacterial and antiproliferative activities of the fresh leaf essential oil of Psidium guajava L. (Myrtaceae). Braz J Biol, 79(4), 697-702. Disponible en: https://doi.org/10.1590/1519-6984.189089

Taldaev, Amir; Terekhov, Roman; Nikitin, Ilya; Zhevlakova, Anastasiya; y Selivanova, Irina (2022). Insights into the Pharmacological Effects of Flavonoids: The Systematic Review of Computer Modeling. International Journal of Molecular Sciences, 23(11). Disponible en: https://doi.org/10.3390/ijms23116023

Tang, Jinling; Lee, Trevor; y Sun Tao (2019). Single-nucleotide editing: From principle, optimization to application. Human Mutation 40(12) 2171-2183. Disponible en: https://doi.org/10.1002/humu.23819

Teixeira Gomes, Ana F.; Fortunado de Medeiros, Wendjilla; Silva de Oliveira, Gerciane; Medeiros, Isaiane; Da Silva Maia, Juliana K.; Leal Bezerra, Ingrid W.; Piuvezam, Grasiela; y Heloneida de Araujo Morais, Ana (2022). In silico structure-based designers of therapeutic targets for diabetes mellitus or obesity: A protocol for systematic review. PLOS ONE, 17(12), e0279039.

Timo, Giulia O.; Reis, Rodrigo, S. S. V. D.; Melo, Adriana F.; Costa, Thales V. L.; Magalhães, Pérola O.; y Homem-de-Mello, Mauricio (2019). Predictive Power of In Silico Approach to Evaluate Chemicals against M. tuberculosis: A Systematic Review. Pharmaceuticals (Basel, Switzerland), 12(3), 1424-8247. Disponible en: https://doi.org/https://doi.org/10.3390/ph12030135

Todke, Pooja A.; y Devarajan, Padma V. (2022). In-silico approach as a tool for selection of excipients for safer amphotericin B nanoformulations. Journal of Controlled Release, 349(2022), 756-764. Disponible en: https://doi.org/https://doi.org/10.1016/j.jconrel.2022.07.030

Trump, Benjamin; Cummings, Christopher; Klasa, Kasia; Galaitsi, Stephanie; y Linkov, Igor (2022). Governing biotechnology to provide safety and security and address ethical, legal, and social implications. Frontiers in Genetics, 13, 1052371. https://doi.org/10.3389/fgene.2022.1052371

Zhang, Yuwei; Zhao, Guofang; Ahmed, Hadi Fatma; Yi, Tianfei; Hu, Shiyun; Cai, Ting; y Liao, Qi (2020). In silico Method in CRISPR/Cas System: An Expedite and Powerful Booster. Frontiers in Oncology, 10(2020), 1-20. Disponible en: https://doi.org/10.3389/fonc.2020.58440

Published

2023-06-28

Issue

Section

Original Articles

Deprecated: json_decode(): Passing null to parameter #1 ($json) of type string is deprecated in /var/www/ojs_ciencia_nueva/plugins/generic/citations/CitationsPlugin.php on line 68